摻雜聚吡咯及其復(fù)合材料的電化學(xué)合成與電化學(xué)性能研究
[Abstract]:In the face of more and more serious energy problems, people are eager to seek an efficient energy storage device to realize the effective utilization of energy. The emergence of supercapacitors has changed the limitations of low power density of secondary batteries and low energy density of ordinary capacitors, and has become a research hotspot in various fields. The selection of electrode material determines the performance of supercapacitor. Conductive polymer polypyrrole (PPy) is a widely used electrode material in supercapacitors due to its low cost, simple synthesis method, low oxidation potential and good stability. The intrinsic state of polypyrrole is poor in conductivity, but in the doped state, the conductivity and electrochemical activity of polypyrrole are enhanced. In order to optimize the electrochemical performance of polypyrrole, doped polypyrrole and multi-walled carbon nanotubes modified polypyrrole electrode materials were synthesized by cyclic voltammetry in acidic system. Fourier transform infrared spectroscopy (FT-IR) was used. X-ray diffraction (XRD), field emission scanning electron microscopy (SEM),) transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure and morphology of the (GCD),. The structure and morphology were characterized by cyclic voltammetry (CV), constant current charge-discharge (GCD),. The electrochemical properties were studied by AC impedance (EIS) and other methods. The main contents are as follows: (1) the protonic acid doped polypyrrole (PPy). Was synthesized on stainless steel by cyclic voltammetry using H_2SO_4 and HNO_3 as polymerization electrolyte respectively. The microstructure, structure and electrochemical properties were studied. The results show that the PPy/HNO_3 electrode material has a porous coral-like structure, while PPy/H_2SO_4 has a cauliflower-like structure. When the current density is 5 Ma cm~ (- 2), the specific capacitance of PPy/0.5M HNO_3 in 0.5 mol L ~ (- 1) (M) H_2SO_4 electrolyte is 596 F 路g ~ (- 1), and the specific capacitance is 95.9% after 1000 cycles. In 1.0m HNO_3 electrolyte, the specific capacitance of PPy/0.1 M H_2SO_4 is 442F g ~ (- 1), and the specific capacitance is 70.6% after 1000 cycles. The polypyrrole electrode materials doped with HNO_3 exhibited better electrochemical properties. (2) using pyrrole as monomer in sulfuric acid medium, three different transition metal ions (Ni~ (2), Fe~ (2) and Cu~ (2) were used as dopants. Three transition metal ion doped polypyrrole electrode materials were synthesized by cyclic voltammetry on stainless steel net. The electrochemical properties of polypyrrole were studied and the effects of transition metal ions on polypyrrole were investigated. The results show that when the current density is 5 Ma cm~ (- 2), in 1.0m HNO_3 electrolyte, PPy/0.1M Ni~ (2), The specific capacitance of PPy/0.5 M Fe~ (2) and PPy/0.1 M Cu~ (2) electrode materials is 517679 and 764 F g ~ (- 1), respectively. After 1000 cycles, the specific capacitance remains 80.5%, 82.7% and 83.8% respectively. The smaller the radius of transition metal ions and the larger the neutron potential, the larger the specific capacitance of the electrode material. (3) on the basis of the above (2), multi-walled carbon nanotubes (MWCNTs) impregnated stainless steel mesh with mixed acid treatment. Cu~ (2)-doped polypyrrole / multi-walled carbon nanotubes composite electrode materials were prepared by cyclic voltammetry. The effect of carbon nanotubes on the electrochemical properties of polypyrrole was systematically studied. The results showed that PPy and MWCNTs formed a core-shell structure composite. The refluxing time of MWCNTs treated with mixed acid was 1 h, and the specific capacitance of the composite was 1269 F g ~ (- 1) when the amount of multi-walled carbon nanotubes in the deposition electrolyte was 0.8%, and the specific capacitance of the composite was 1269 F 路g ~ (- 1). The specific capacitance retention rate is 88.1% after 1000 cycles at a sweep rate of 50 MV Ss ~ (- 1).
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O633.5;TB332;O646
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 謝凝鈺;彭志華;郭萍;吳喜軍;胡林華;張亞楠;;碳納米管聚合物復(fù)合材料導(dǎo)電性能研究[J];洛陽理工學(xué)院學(xué)報(自然科學(xué)版);2016年02期
2 吳雪;沈俊海;陳海峰;李良超;李涓碧;丁艷;;聚吡咯/碳納米管復(fù)合物的制備及電性能研究[J];原子與分子物理學(xué)報;2014年06期
3 賈志軍;王俊;王毅;;超級電容器電極材料的研究進(jìn)展[J];儲能科學(xué)與技術(shù);2014年04期
4 余稀;但濤;;超級電容器在電動汽車中的應(yīng)用[J];電子元件與材料;2014年01期
5 劉怡;張世超;張?zhí)m;溫博華;杜志甲;;聚吡咯納米線的電化學(xué)可控性生成與表征[J];電源技術(shù);2012年01期
6 劉春娜;;超級電容器應(yīng)用展望[J];電源技術(shù);2010年09期
7 宗和;;辦出一個“低碳世博”——上海世博會低碳亮點盤點[J];上海質(zhì)量;2010年06期
8 傅清賓;高博;蘇凌浩;原長洲;盧向軍;張校剛;;氫鍵誘導(dǎo)的聚吡咯/苯磺酸功能化多壁碳納米管的制備及其電化學(xué)行為[J];物理化學(xué)學(xué)報;2009年11期
9 羅俊;;一軸四館“綠”意盎然——上海世博會建筑環(huán)保先[J];中華建設(shè);2009年06期
10 田穎;李浙齊;徐洪峰;吳艷波;楊鳳林;;不同電解質(zhì)溶液對聚吡咯修飾膜性質(zhì)的影響[J];物理化學(xué)學(xué)報;2008年04期
相關(guān)博士學(xué)位論文 前4條
1 王雪;改善導(dǎo)電聚合物電極材料電化學(xué)循環(huán)穩(wěn)定性的方法研究[D];蘭州大學(xué);2015年
2 王凱;超級電容器的制備及性能研究[D];大連理工大學(xué);2014年
3 孟繁慧;基于新型納米結(jié)構(gòu)超級電容器材料的研究[D];山東大學(xué);2013年
4 朱日龍;聚吡咯的電化學(xué)合成、應(yīng)用及防蝕機(jī)理研究[D];湖南大學(xué);2009年
相關(guān)碩士學(xué)位論文 前8條
1 鞏士磊;電化學(xué)沉積法制備3D結(jié)構(gòu)Ni(OH)_2/C電極材料及電容性能研究[D];太原理工大學(xué);2016年
2 王俊;超級電容器電極材料的制備和電化學(xué)性能研究[D];內(nèi)蒙古科技大學(xué);2015年
3 劉寧;超級電容儲能系統(tǒng)在風(fēng)力發(fā)電低電壓穿越中的應(yīng)用研究[D];青島大學(xué);2015年
4 劉珍;聚吡咯/石墨烯復(fù)合材料的制備及其用于超級電容器電極材料的性能研究[D];華中師范大學(xué);2014年
5 林幼貞;摻雜聚吡咯及復(fù)合材料用作超級電容器電極材料的研究[D];華僑大學(xué);2012年
6 王冠;超級電容器電極材料的制備及其性能的研究[D];清華大學(xué);2011年
7 甄曉燕;過渡金屬離子修飾聚苯胺電極的表征及性能研究[D];河北師范大學(xué);2011年
8 杜冰;導(dǎo)電聚吡咯及其復(fù)合材料用作超級電容器電極材料的研究[D];西南交通大學(xué);2009年
,本文編號:2437439
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2437439.html