天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 材料論文 >

冷凝液自輸運(yùn)納米仿生表面研究

發(fā)布時(shí)間:2019-01-12 15:25
【摘要】:冷凝現(xiàn)象廣泛存在于自然界和工業(yè)生產(chǎn)中,例如,發(fā)電、高效熱能利用及熱管理、海水淡化和環(huán)境治理等。然而,傳統(tǒng)材料表面上冷凝液易滯留,會(huì)導(dǎo)致結(jié)冰結(jié)霜、材料導(dǎo)熱性能大幅下降等問(wèn)題。因此,近年來(lái)利用微納加工技術(shù)開發(fā)新型冷凝液高效自輸運(yùn)表面已經(jīng)引起科學(xué)界和產(chǎn)業(yè)界的高度關(guān)注,因?yàn)檫@種新型界面可用于開發(fā)新型功能材料,如抗結(jié)冰、抗結(jié)霜、濕氣自清潔以及強(qiáng)化冷凝傳熱材料。本文受冷凝液自輸運(yùn)生物表面啟發(fā),開展了銅基納米粒子多孔膜和超疏水-親水雜化界面構(gòu)筑的研究并表征了它們的冷凝微滴自輸運(yùn)性能。1)從冷凝微滴自驅(qū)離表面的基本設(shè)計(jì)原則出發(fā):控制極低界面固-液黏附并同時(shí)控制亞微米結(jié)構(gòu)間距避免濕氣浸潤(rùn),我們?cè)O(shè)計(jì)了一種具有冷凝微滴自輸運(yùn)功能的三維粗糙的納米粒子多孔膜;提出基于協(xié)同“電化學(xué)參數(shù)擇優(yōu)控制氧化鈰納米粒子各向同性生長(zhǎng)”與“析氫反應(yīng)釋放的微氣泡作為造孔模板”的簡(jiǎn)易濕化學(xué)合成策略實(shí)現(xiàn)了氧化鈰納米粒子多孔膜在銅表面的原位生長(zhǎng)。結(jié)果表明,相比于光滑疏水銅表面,合成的納米樣品具有小尺寸冷凝微滴自輸運(yùn)性能。2)我們提出巧妙利用超疏水表面上的冷凝微滴作為天然模板來(lái)引入小尺寸親水微區(qū)的新型合成策略。這一合成策略協(xié)同利用了表面微滴的兩個(gè)效應(yīng):一是作為離散的“粘合劑”來(lái)隨機(jī)“捕獲”撞擊的聚乙烯醇(PVA)霧滴以實(shí)現(xiàn)小尺寸親水微區(qū)的非均相修飾,二是使得融合微滴懸浮在納米結(jié)構(gòu)頂部,從而有效限制PVA與表面的接觸面積并進(jìn)一步控制了親水微區(qū)的尺寸。隨后,我們以超疏水氧化鋅納米鉛筆陣列結(jié)構(gòu)表面為例,驗(yàn)證了該合成策略的可行性。通過(guò)定量表征不同噴霧時(shí)間樣品表面固-液界面黏附力,我們找到了優(yōu)化的超疏水-親水雜化冷凝界面。研究結(jié)果表明,相比于均質(zhì)的超疏水表面,優(yōu)化的雜化樣品表面具有更高效的小尺度冷凝微滴自輸運(yùn)性能;诜律砻娌呗蚤_發(fā)的納米粒子多孔膜和超疏水-親水雜化界面都具有小尺度冷凝微滴高效自輸運(yùn)性能,這為設(shè)計(jì)開發(fā)高效冷凝納米表面提供了方向。
[Abstract]:Condensation is widespread in nature and industrial production, such as power generation, efficient thermal energy utilization and thermal management, seawater desalination and environmental control. However, the condensate on the surface of traditional materials is easy to stay, which will lead to freezing and frosting, and the thermal conductivity of materials will be greatly reduced. Therefore, in recent years, the development of new condensate self-transport surfaces using micro-nano processing technology has attracted great attention of the scientific and industrial communities, because this new interface can be used to develop new functional materials, such as anti-icing and anti-frosting. Moisture self-cleaning and enhanced condensation heat transfer materials. This paper is inspired by the self-transport biological surface of condensate. The surface self-transport properties of copper based nanoparticle porous film and superhydrophobic hydrophilic hybrid were studied and characterized. 1) based on the basic design principle of condensing micro-droplet self-driving surface: the control pole. Low interface solid-liquid adhesion and control of submicron structure spacing to avoid moisture infiltration, We have designed a three-dimensional coarse porous film with condensing micro-droplet self-transport function. A simple wet chemical synthesis strategy based on synergistic "electrochemical parameter preferential control for isotropic growth of cerium oxide nanoparticles" and "microbubble released by hydrogen evolution reaction as pore making template" was proposed to achieve multiple cerium oxide nanoparticles. In situ growth of pore film on copper surface. The results show that compared with smooth hydrophobic copper surface, The synthesized nanocrystalline samples have self-transport properties of small size condensing micro-droplets. 2) A new synthesis strategy is proposed to introduce small hydrophilic microregions by using condensing micro-droplets on superhydrophobic surfaces as natural templates. The synthesis strategy collaborates with two effects of surface droplets: one is to "capture" randomly the polyvinyl alcohol (PVA) droplets as a discrete "binder" to achieve heterogeneous modification of small hydrophilic microdomains. Second, the fusion droplets are suspended on the top of the nanostructure, which effectively limits the contact area between the PVA and the surface and further controls the size of the hydrophilic microregion. Then we take the surface of superhydrophobic zinc oxide nano-pencils as an example to verify the feasibility of the synthesis strategy. By quantitatively characterizing the adhesion between solid and liquid interface of different spray time samples, we have found the optimized superhydrophobic and hydrophilic hybrid condensation interface. The results show that compared with homogeneous superhydrophobic surface, the optimized hybrid sample surface has more efficient self-transport performance of small scale condensing micro-droplets. The porous film and superhydrophobic hydrophilic hybrid interface developed based on biomimetic surface strategy have high self-transport properties of small scale condensing micro-droplets, which provides a direction for the design and development of high-efficiency condensed nano-surfaces.
【學(xué)位授予單位】:上海大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:TB34

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李蘊(yùn)玲;;催化劑表面研究方法(一)[J];石油煉制與化工;1979年05期

2 ;超疏油表面研究獲進(jìn)展[J];石油化工應(yīng)用;2012年04期

3 ;自然信息[J];自然雜志;1982年07期

4 吳惠錦;;催化劑表面研究方法(三)[J];石油煉制與化工;1979年07期

5 盧晟;李梅;;超疏油表面研究進(jìn)展[J];材料導(dǎo)報(bào);2013年11期

6 張瑗,紀(jì)元,朱逢吾,梁成廣,,肖紀(jì)美;抗硫酸露點(diǎn)腐蝕鋼的表面研究[J];中國(guó)腐蝕與防護(hù)學(xué)報(bào);1995年02期

7 杜晨光;夏帆;王樹濤;王京霞;宋延林;江雷;;仿生智能浸潤(rùn)性表面研究的新進(jìn)展[J];高等學(xué)校化學(xué)學(xué)報(bào);2010年03期

8 陳德森;林道;斯派塞;;浸漬鋇鎢陰極的表面研究[J];南京工學(xué)院學(xué)報(bào);1983年02期

9 ;自清潔功能的高分子仿生表面研究取得新突破[J];表面工程資訊;2004年06期

10 陳銘憶;溫變英;張揚(yáng);;聚多巴胺修飾固體材料表面研究進(jìn)展[J];中國(guó)塑料;2013年06期

相關(guān)會(huì)議論文 前4條

1 王健君;;防覆冰高分子表面研究[A];2013年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集——主題F:功能高分子[C];2013年

2 韓鑫;張德遠(yuǎn);;生物體表形貌直接復(fù)制制備仿生功能表面研究[A];走中國(guó)特色農(nóng)業(yè)機(jī)械化道路——中國(guó)農(nóng)業(yè)機(jī)械學(xué)會(huì)2008年學(xué)術(shù)年會(huì)論文集(上冊(cè))[C];2008年

3 楊維才;羅文華;張廣豐;唐洪全;熊必濤;;超聲波強(qiáng)化超臨界CO_2處理鈾表面研究[A];第七屆全國(guó)核化學(xué)與放射化學(xué)學(xué)術(shù)討論會(huì)論文摘要集[C];2005年

4 宋麗云;彭順金;;超疏水自清潔表面研究進(jìn)展[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第2分冊(cè))[C];2010年

相關(guān)碩士學(xué)位論文 前2條

1 羅雨婷;冷凝液自輸運(yùn)納米仿生表面研究[D];上海大學(xué);2016年

2 安光明;基于MEMS的超滑表面研究[D];哈爾濱理工大學(xué);2016年



本文編號(hào):2407925

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2407925.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶629f8***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com