熱—力作用下復(fù)合材料層合板的響應(yīng)分析
[Abstract]:Composite materials have been widely used in aerospace, ship engineering, building engineering, vehicle manufacturing industry and mechanical engineering due to their excellent mechanical and physical properties. However, in the process of manufacturing, processing and using of composite materials, there are often severe temperature changes. Due to the different properties of laminated materials, significant temperature stress will occur in laminated plates. These thermal stresses will be large enough to cause excessive deformation of the structure, and even lead to the fracture, stripping and matrix destruction of laminated structure fibers. Therefore, in order to ensure the safety and reliability of composite laminates to the maximum extent, it is an important scientific problem to accurately predict the stress distribution in composite laminates under thermal loading. In this paper, the current situation of laminated plate theory is reviewed in detail, and the advantages and disadvantages of these theories are summarized. For laminated composite plates, the in-plane stress and transverse shear stress can be directly calculated by the constitutive equation. The theory achieves a good balance in efficiency and precision. Therefore, the work of this paper is based on this theory. Secondly, the global-local high-order shear deformation theory is derived in detail. Based on the initial displacement model of the global-local theory, the continuous condition of layered displacement, the continuous condition of transverse shear stress and the boundary condition of free surface stress are introduced. Finally, the final displacement model of global and local high-order shear deformation containing only 11 global displacement unknowns is obtained, which lays a theoretical foundation for the analysis of laminated plates under thermal load, force load and thermal-force load. According to the response analysis of laminated plates and sandwich plates under thermal load, the temperature field of laminated plates and the three-dimensional linear elastic solutions under thermal load are summarized. The analytical solution of simply supported laminated plates with four edges is given by using Navier's 's bipolar expansion method. Yeah, three layers, 0.r90.0.0.0.0.0.0.0.0.0.0. Four side simply supported laminated plates and 0./core/0 擄four side simply supported laminated plates are calculated, respectively. The thermal loads are distributed along the thickness, the thermal loads are distributed gradient, and the responses under the distributed thermal loads are solved by heat conduction. Compared with the published results of other scholars, the results show that the theory of global and local high order shear denaturation has obvious advantages in solving the thermal response analysis of composite laminated plates. At the same time, the thermal response of the laminated plate under the action of the temperature field calculated by the heat conduction equation is compared with that of the linear assumed temperature field. The results show that the assumption of an improper temperature field will lead to a large error in the thermal response of the laminated plate. Based on the effect of thermal load, the analytical solution of simply supported laminated plates with four edges under the action of thermal-force load is given, and the three-dimensional linear elastic solution of the laminated plate under the action of force load and thermal-force load is summarized. Numerical examples focus on the three layers of 0. / 90. The typical numerical examples of simply supported laminated plates with four edges subjected to force and thermal-mechanical loads are studied and compared with the results published by other scholars and the Abaqus finite element solution. The applicability and accuracy of the global-local high-order shear denaturation theory for the response analysis of composite laminated plates under thermal-mechanical loads are verified. Finally, by changing the direction and sequence of laminated laminates, the optimal design of laminated plates is carried out to reduce the interlaminar stress and improve the anti-delamination ability of composite materials. The optimization design is divided into two steps: the first step is to optimize the laying angle, and six typical laying angle combinations are designed; the second step is to optimize the laying sequence, based on the better laying angle combination found in the first step. Eight new schemes of different layering sequence are designed.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TB33
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 洪明,陳浩然;修復(fù)對(duì)含分層損傷復(fù)合材料層合板振動(dòng)特性的影響[J];玻璃鋼/復(fù)合材料;2002年03期
2 崔海濤,郝勇,溫衛(wèi)東;含孔復(fù)合材料層合板逐漸損傷破壞分析[J];理化檢驗(yàn)(物理分冊(cè));2002年04期
3 魏玉卿,陳斌;縫紉對(duì)復(fù)合材料層合板分層屈曲的影響[J];重慶大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年07期
4 劉芹,任建亭,姜節(jié)勝,郭運(yùn)強(qiáng),陳換過(guò);復(fù)合材料層合板非線性熱振動(dòng)分析[J];動(dòng)力學(xué)與控制學(xué)報(bào);2005年01期
5 關(guān)志東;郭淵;;含缺陷的復(fù)合材料層合板低速?zèng)_擊過(guò)程的有限元模擬[J];復(fù)合材料學(xué)報(bào);2006年02期
6 吉桂秀;李嬌顏;陳浩然;;多分層對(duì)復(fù)合材料層合板自振特性的影響[J];復(fù)合材料學(xué)報(bào);2007年04期
7 賀躍進(jìn);張恒;;復(fù)合材料層合板裂紋診斷的實(shí)驗(yàn)研究[J];玻璃鋼/復(fù)合材料;2008年02期
8 郭翔鷹;張偉;姚明輝;陳麗華;;復(fù)合材料層合板的混沌運(yùn)動(dòng)分析[J];振動(dòng)與沖擊;2009年06期
9 程小全;楊琨;胡仁偉;鄒健;;縫合復(fù)合材料層合板拉伸疲勞損傷及其機(jī)理[J];力學(xué)學(xué)報(bào);2010年01期
10 陳春露;劉文博;張璐;王榮國(guó);隋曉東;鄭達(dá);;復(fù)合材料層合板分層疲勞性能研究進(jìn)展[J];玻璃鋼/復(fù)合材料;2012年01期
相關(guān)會(huì)議論文 前10條
1 吉桂秀;陳浩然;洪明;;含多個(gè)分層損傷復(fù)合材料層合板的自振特性研究[A];復(fù)合材料——基礎(chǔ)、創(chuàng)新、高效:第十四屆全國(guó)復(fù)合材料學(xué)術(shù)會(huì)議論文集(下)[C];2006年
2 盧智先;矯桂瓊;王平安;朱勝利;;含分層損傷的復(fù)合材料層合板壓縮力學(xué)行為的實(shí)驗(yàn)研究[A];復(fù)合材料——基礎(chǔ)、創(chuàng)新、高效:第十四屆全國(guó)復(fù)合材料學(xué)術(shù)會(huì)議論文集(下)[C];2006年
3 郭翔鷹;張偉;陳麗華;;二自由度復(fù)合材料層合板的非線性動(dòng)力學(xué)分析[A];慶祝中國(guó)力學(xué)學(xué)會(huì)成立50周年暨中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)’2007論文摘要集(下)[C];2007年
4 郭翔鷹;張偉;姚明輝;陳麗華;;復(fù)合材料層合板的混沌運(yùn)動(dòng)分析[A];第八屆全國(guó)動(dòng)力學(xué)與控制學(xué)術(shù)會(huì)議論文集[C];2008年
5 郭翔鷹;張偉;陳麗華;;復(fù)合材料層合板動(dòng)力學(xué)方程的混沌研究[A];第十五屆全國(guó)復(fù)合材料學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2008年
6 郭翔鷹;張偉;;角鋪設(shè)的復(fù)合材料層合板的動(dòng)力學(xué)分析[A];現(xiàn)代數(shù)學(xué)和力學(xué)(MMM-XI):第十一屆全國(guó)現(xiàn)代數(shù)學(xué)和力學(xué)學(xué)術(shù)會(huì)議論文集[C];2009年
7 郭翔鷹;張偉;;角鋪設(shè)的復(fù)合材料層合板的混沌運(yùn)動(dòng)分析[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
8 郭翔鷹;張偉;;角鋪設(shè)的復(fù)合材料層合板的混沌運(yùn)動(dòng)[A];第十二屆全國(guó)非線性振動(dòng)暨第九屆全國(guó)非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議論文集[C];2009年
9 劉遠(yuǎn)東;;含分層損傷復(fù)合材料層合板的動(dòng)力破壞分析[A];中國(guó)工程物理研究院科技年報(bào)(2003)[C];2003年
10 呂霞;周儲(chǔ)偉;;復(fù)合材料層合板螺栓連接的數(shù)值模擬[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
相關(guān)博士學(xué)位論文 前10條
1 洪明;分層損傷復(fù)合材料層合板振動(dòng)與聲特性研究[D];大連理工大學(xué);2003年
2 劉偉先;復(fù)合材料層合板真空輔助濕鋪貼挖補(bǔ)修理分析方法研究[D];南京航空航天大學(xué);2013年
3 劉志強(qiáng);雷電環(huán)境下復(fù)合材料層合板電—磁—熱—結(jié)構(gòu)耦合效應(yīng)研究[D];西北工業(yè)大學(xué);2015年
4 曹俊;遺傳算法及其在復(fù)合材料層合板設(shè)計(jì)中應(yīng)用的研究[D];南京航空航天大學(xué);2003年
5 呂書(shū)鋒;軸向外伸懸臂復(fù)合材料層合板的非線性動(dòng)力學(xué)研究[D];北京工業(yè)大學(xué);2013年
6 徐穎;復(fù)合材料層合板沖擊損傷及沖擊后疲勞壽命研究[D];南京航空航天大學(xué);2007年
7 楊加明;濕熱環(huán)境下復(fù)合材料層合板的幾何非線性分析[D];南京航空航天大學(xué);2005年
8 任曉輝;復(fù)合材料層合板C~0型高階鋸齒理論[D];大連理工大學(xué);2014年
9 張璐;含分層缺陷復(fù)合材料層合板分層擴(kuò)展行為與數(shù)值模擬研究[D];哈爾濱工業(yè)大學(xué);2012年
10 侯玉品;復(fù)合材料層合板鋪層設(shè)計(jì)與離散結(jié)構(gòu)選型優(yōu)化方法研究[D];大連理工大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 郭文輝;復(fù)合材料層合板鳥(niǎo)撞動(dòng)響應(yīng)及損傷分析[D];鄭州大學(xué);2015年
2 胡成鉦;FRP復(fù)合材料三角形夾芯橋面板的強(qiáng)度分析[D];南京理工大學(xué);2015年
3 陶斐;復(fù)合材料層合板動(dòng)力學(xué)建模與內(nèi)共振研究[D];蘇州大學(xué);2015年
4 田立智;基于整體局部理論的復(fù)合材料層合板多體系統(tǒng)動(dòng)力學(xué)研究[D];上海交通大學(xué);2015年
5 簡(jiǎn)曉彬;復(fù)合材料層合板疲勞累積損傷數(shù)值模擬[D];哈爾濱工業(yè)大學(xué);2015年
6 孫浩然;基于主動(dòng)Lamb波的復(fù)合材料層合板沖擊損傷識(shí)別研究[D];哈爾濱工業(yè)大學(xué);2015年
7 劉英芝;復(fù)合材料層合板疲勞行為研究[D];哈爾濱工業(yè)大學(xué);2015年
8 李洪朋;噪聲載荷條件下復(fù)合材料層合板動(dòng)力學(xué)響應(yīng)分析及疲勞壽命預(yù)報(bào)[D];哈爾濱工業(yè)大學(xué);2015年
9 楊宇航;復(fù)合材料層合板結(jié)構(gòu)非局部漸進(jìn)失效建模與有限元分析[D];浙江大學(xué);2015年
10 楊述松;基于二次開(kāi)發(fā)的復(fù)合材料優(yōu)化技術(shù)研究[D];重慶理工大學(xué);2015年
,本文編號(hào):2358802
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2358802.html