基于納米通道的生物分子檢測(cè)及影響因素研究
[Abstract]:Nanochannels refer to the pore or pipe-like structures with diameter in 0.1-100nm, which have excellent structural stability, thermal stability, excellent chemical and optical properties at microscale. Therefore, it has potential application value in various scientific research fields. Especially, the research on the application of nano-channel technology in biomolecules detection is of great significance. The work of analyzing and detecting specific protein macromolecules by using nano-channels at home and abroad has been carried out in a large number. However, the effects of experimental conditions on the movement of biomolecules in the nanochannels are still of great scientific value. Therefore, under different temperature and viscosity of electrolyte solution, the migration speed and flux of protein molecules in nanowires were studied. The following work was carried out in this paper: 1. Using the blocking effect of the protein molecular channel to the current, we design and build the biomolecular detection device, debug the experimental instrument and build the experimental platform. The change of ion current can be recorded to detect the pore crossing of the tested particles, and the detection of protein molecules can be achieved. The effect of ambient temperature on the migration of sheep anti-human IgG particles was studied. The changes of current induced by IgG particles were recorded at different experimental temperatures. It was found that the experimental temperature affected the recovery of ion current at the inflection point. A reasonable model is established to explain the experimental phenomena qualitatively. The experimental current variation trend is preliminarily verified by programming to simulate the IgG particle passing through the hole. 2. The effects of the viscosity of electrolyte solution and the gradient of concentration on the migration of sheep anti-human IgG and bovine serum albumin (BSA) BSA were studied. The viscosity of the solution affects the viscosity resistance of the measured particles, increases the viscosity of the solution and effectively prolongs its velocity in the solution, thus reducing the number of particles passing through the pore in a unit time. Because IgG and BSA have different shape size and surface charge density, the effect of solution viscosity on them is different. At the same time, the concentration gradient was established on both sides of the nano-pore. The effect of bidirectional electroosmotic flow in the nano-pore and the potential near the nano-pore were changed due to the change of the concentration gradient. Thus, the trapping rate of the measured particles and the migration time of the tested particles in the nanorods were affected by the nanoparticles' trapping rate and the migration time of the tested particles in the nanoparticles. A composite chip based on silicon nitride nano-pore array and polycarbonate nano-pore array is fabricated. The ion current changes caused by the pore crossing of the measured biomolecules will be recorded and analyzed. The ion current decreases caused by porous particles were detected in multichannel and mixed channels, respectively. In the mixed channel, the information about the pore passage of biomolecules can be obtained by analyzing the current drop and the time of blocking signal, and the frequency of the current drop can be controlled by changing the number of effective nano-pores on the composite film. The results show that the hybrid nano-fluid detection chip based on micropore and nano-pore array has potential advantages in the detection of biomolecules. To sum up, the effects of experimental temperature, electrolyte solution and composite nanochannels on the migration of biomolecules through nano-pores are studied in this paper, which lays a foundation for the detection of specific biomolecules by using nanochannels.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 白春禮;;納米科技及其發(fā)展前景[J];群言;2001年04期
2 白春禮;納米科技及其發(fā)展前景[J];安徽科技;2002年03期
3 白春禮;納米科技及其發(fā)展前景[J];微納電子技術(shù);2002年01期
4 黃彪;納米科技前景燦爛,應(yīng)用開發(fā)任重道遠(yuǎn)[J];中國(guó)粉體技術(shù);2002年01期
5 一東;;納米產(chǎn)業(yè)化成了企業(yè)泥潭[J];新經(jīng)濟(jì)導(dǎo)刊;2003年Z2期
6 宋允萍;納米科技[J];中學(xué)文科;2001年01期
7 李斌,沈路濤;納米科技[J];焊接學(xué)報(bào);2000年04期
8 齊東月;納米 又一場(chǎng)新技術(shù)革命來(lái)臨了[J];民族團(tuán)結(jié);2000年10期
9 徐濱士,歐忠文,馬世寧;納米表面工程基本問(wèn)題及其進(jìn)展[J];中國(guó)表面工程;2001年03期
10 白春禮;納米科技及其發(fā)展前景[J];計(jì)算機(jī)自動(dòng)測(cè)量與控制;2001年03期
相關(guān)會(huì)議論文 前10條
1 陳天虎;謝巧勤;;納米礦物學(xué)[A];中國(guó)礦物巖石地球化學(xué)學(xué)會(huì)第13屆學(xué)術(shù)年會(huì)論文集[C];2011年
2 馬燕合;李克健;吳述堯;;加快建設(shè)我國(guó)納米科技創(chuàng)新體系[A];納米材料和技術(shù)應(yīng)用進(jìn)展——全國(guó)第二屆納米材料和技術(shù)應(yīng)用會(huì)議論文集(上卷)[C];2001年
3 李正孝;煍巖;;漫娗納米技圫和納米材料的a捎煤蛌|展[A];第二屆功能性紡織品及納米技術(shù)應(yīng)用研討會(huì)論文集[C];2002年
4 伊陽(yáng);陶鑫;;納米CaCO_3在塑料改性中的應(yīng)用研究[A];PPTS2005塑料加工技術(shù)高峰論壇論文集[C];2005年
5 洪廣言;;稀土產(chǎn)業(yè)與納米科技[A];第九屆中國(guó)稀土企業(yè)家聯(lián)誼會(huì)會(huì)議論文集[C];2002年
6 惠飛;王棟民;;納米水泥混凝土的研究進(jìn)展[A];2008年中國(guó)水泥技術(shù)年會(huì)暨第十屆全國(guó)水泥技術(shù)交流大會(huì)論文集[C];2008年
7 秦伯雄;陳峰;馬卓然;;高壓流體納米磨及其應(yīng)用[A];納米材料和技術(shù)應(yīng)用進(jìn)展——全國(guó)第三屆納米材料和技術(shù)應(yīng)用會(huì)議論文集(上卷)[C];2003年
8 王樹林;李生娟;童正明;李來(lái)強(qiáng);;振動(dòng)納米學(xué)進(jìn)展[A];第七屆全國(guó)顆粒制備與處理學(xué)術(shù)暨應(yīng)用研討會(huì)論文集[C];2004年
9 洪廣言;賈積曉;于德才;孫鎖良;李天民;王振華;;納米級(jí)氧化鐿的制備與表征[A];中國(guó)稀土學(xué)會(huì)第四屆學(xué)術(shù)年會(huì)論文集[C];2000年
10 洪茂椿;;納米催化在化石資源高效轉(zhuǎn)化中的應(yīng)用研究[A];中國(guó)化學(xué)會(huì)2008年中西部地區(qū)無(wú)機(jī)化學(xué)、化工學(xué)術(shù)交流會(huì)會(huì)議論文集[C];2008年
相關(guān)重要報(bào)紙文章 前10條
1 張立德(中國(guó)科學(xué)院固體物理研究所);納米專家話納米[N];中國(guó)高新技術(shù)產(chǎn)業(yè)導(dǎo)報(bào);2002年
2 本報(bào)記者 趙曉展;納米科技,,產(chǎn)業(yè)化序幕剛剛拉開[N];工人日?qǐng)?bào);2002年
3 宗合 曉麗;納米科技成果產(chǎn)業(yè)化將帶來(lái)巨大經(jīng)濟(jì)效益[N];消費(fèi)日?qǐng)?bào);2004年
4 朱文龍;產(chǎn)學(xué)研聯(lián)手助推納米產(chǎn)業(yè)[N];文匯報(bào);2006年
5 ;神奇的納米科技[N];中國(guó)有色金屬報(bào);2006年
6 本報(bào)記者 李贄;納米還沒(méi)走出實(shí)驗(yàn)室[N];大眾科技報(bào);2001年
7 馮 薇;納米護(hù)膚品沒(méi)那么神[N];大眾科技報(bào);2005年
8 本報(bào)記者 彤云;打造納米產(chǎn)業(yè)鏈條[N];中國(guó)高新技術(shù)產(chǎn)業(yè)導(dǎo)報(bào);2001年
9 張芳;納米護(hù)膚品其實(shí)沒(méi)那么神[N];科技日?qǐng)?bào);2005年
10 趙展慧 張之豪;納米世界有多神奇?[N];人民日?qǐng)?bào);2013年
相關(guān)博士學(xué)位論文 前10條
1 樊莉鑫;納米電極體系界面結(jié)構(gòu)及過(guò)程的理論與數(shù)值模擬研究[D];武漢大學(xué);2014年
2 馮曉勇;高速重?fù)魲l件下高錳鋼表面納米晶的制備及組織性能研究[D];燕山大學(xué);2015年
3 黃權(quán);B-C-N體系中新型超硬材料制備與性能研究[D];燕山大學(xué);2015年
4 王東新;納米鉆石靶向載藥體系的制備及其與細(xì)胞相互作用的研究[D];山西大學(xué);2014年
5 張俊麗;低維磁性納米結(jié)構(gòu)的可控合成、微觀表征及應(yīng)用研究[D];蘭州大學(xué);2015年
6 于佳鑫;兩種新型光學(xué)材料在顯微生物成像與光譜檢測(cè)中的應(yīng)用探索[D];浙江大學(xué);2015年
7 李志明;塊體納米晶鈦的制備及組織演變與力學(xué)行為[D];上海交通大學(xué);2014年
8 楊樹瑚;缺陷對(duì)幾種過(guò)渡族金屬氧化物磁性的影響[D];南京大學(xué);2012年
9 劉春靜;鋰離子電池錫基納米負(fù)極材料制備及儲(chǔ)鋰性能[D];大連理工大學(xué);2015年
10 謝偉麗;SiC納米線三維結(jié)構(gòu)的制備與生物相容性[D];哈爾濱工業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 林詮彬;中藥納米化對(duì)中醫(yī)藥的影響[D];廣州中醫(yī)藥大學(xué);2010年
2 毛彩霞;納米二氧化錳的安全性評(píng)價(jià)[D];華中師范大學(xué);2008年
3 鄧世琪;PbTi0_3及LiTi0_2納米結(jié)構(gòu)的水熱合成及其光致發(fā)光和光催化性能研究[D];浙江大學(xué);2015年
4 葛巖;YAG:Ce~(3+)納米晶的制備及其發(fā)光性能的研究[D];上海師范大學(xué);2015年
5 潘偉源;水熱法合成的過(guò)渡金屬化合物摻雜對(duì)Li-Mg-B-H儲(chǔ)氫體系的改性研究[D];浙江大學(xué);2015年
6 豆貝貝;納米水泥熟料礦物的合成與性能研究[D];河北聯(lián)合大學(xué);2014年
7 郭步超;高氮奧氏體不銹鋼機(jī)械納米化表面層及其熱穩(wěn)定性研究[D];長(zhǎng)春工業(yè)大學(xué);2015年
8 王艷艷;納米化/滲氮/滲硫?qū)优c潤(rùn)滑油添加劑的摩擦化學(xué)效應(yīng)研究[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
9 周文敏;Cr_2WO_6、Ag_2CrO_4微/納米晶的制備及性能研究[D];陜西科技大學(xué);2015年
10 龔成章;納米鋁結(jié)構(gòu)性質(zhì)及Al/RNO_2界面作用的理論研究[D];南京理工大學(xué);2015年
本文編號(hào):2328651
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2328651.html