PET基材納米吸墨材料的制備及性能研究
[Abstract]:The nano ink absorbing material has the advantages of vivid color expression ability, excellent color printing effect and the like, and has been developed rapidly in recent years. The final quality of the ink-receptive material is largely determined by the performance of the ink-receptive layer in the ink-receptive material. However, at present, the ink-absorbing material of the industrialization has the defects of poor absorption, poor printability and the like, and the application thereof is limited. The purpose of this paper is to build a nanometer ink-absorbing material with excellent properties. The effects of different kinds of nano-particles on the properties of ink-absorbing materials were studied in this paper, and nano-silica with different particle size and specific surface area was studied. The effect of the same nano-component on the properties of ink-absorbing material and the mechanism of performance enhancement were studied, and the effect of the amount of adhesive on the properties of the nano-ink-absorbing material was investigated. The PET film is a weakly polar polymer material, and the hydrophilicity of the PET film is poor, so it is necessary to pre-treat the PET film before coating. the surface modification of the PET film used for the ink-absorbing material is carried out by utilizing the low-temperature plasma processing technology, and the wettability of the PET surface is improved by changing different treatment time and processing power so as to lay a solid foundation for obtaining the high-quality nano ink-absorbing material. Through characterization of the surface roughness, surface elements, surface morphology, surface contact angle and surface energy of the substrate after the low temperature plasma treatment, the low temperature plasma modification can change the oxygen content of the surface of the PET film, the polar functional group is increased, and the surface roughness becomes large, and the interfacial bonding property between the PET and the adhesive is improved. The content of C = O functional group before modification was zero, and its content increased to 13.37% when the modification time was 20s. It was found that the modification of PET by low-temperature plasma was time-sensitive and its mechanical properties changed slightly before and after modification. As can be seen from Table 3-5, the functional groups of C-C (284. 80e V), C-O (C-OH) (285. 78e V), O = C-O (COOH) (286. 90e V) are hardly present in the spectrogram prior to modification of the PET film. The content of the functional groups of C-C, C-O (C-OH), O = C-O (COOH) was increased, especially C = O functional group and O = C-O functional group, and their content was zero before modification. After modification, the content of C = O functional group increased to 12.83% when the modification time was 10s, and its content increased to 13.37% when its modification time was 20s. The modified O = C-O functional group increased to 14.01% when the modification time was 10s, and its content increased to 17. 46% when its modified time was 20s. The addition of the modified PET surface C = O functional group also shows that the polarity of PET is improved. The improvement of polarity will directly affect the bonding energy between PET and ink absorbing layer and the bonding ability between interfaces. the ink receptive layer structure of the nano ink-absorbing material composed of different kinds of pigments is characterized, and after the nano ink-absorbing material is added with the nano-particles, the bulk property, the surface strength, the printing property and the stability of the nano ink-absorbing material are improved. the nano silicon dioxide is uniformly dispersed in the adhesive, and the dispersibility is good for the nano titanium dioxide and the nano calcium carbonate. The ink absorbing material composed of nano silicon dioxide has small fluctuation range of the absorption curve of the ink, the depth value at the deepest depth of the ink is 16. 6. m u.m, the depth value at the deepest part of the penetration is 13. 6. m u.m. The printing property of the ink-absorbing material composed of nano silicon dioxide is the best, the stability of the ink-receptive material containing the nano-titanium dioxide is improved. In the case of the nano-ink-absorbing material, the surface particles of the ink-absorbing layer of the ink-absorbing material composed of silica having a smaller particle diameter are densely packed (but there are cracks on the surface), and the ink-absorbing layer composed of the nano-silica particles having a larger particle size is loosely arranged. With the increase of the size of the nano-silica, the porosity of the surface of the ink-absorbing layer also increases. The porosity of the ink-absorbing material, the pore size of the ink-absorbing layer, the pore area and the pore volume increase with the increase of the particle size of the nanoparticles. According to the test analysis, the whiteness, smoothness, glossiness and absorption efficiency of the ink-absorbing material prepared by the silica particles with the particle size of 12nm are large, and the corresponding values of the ink-absorbing material prepared by the two kinds of nano-silica particles are large, and the roughness, the wettability, the wetting depth and the surface strength are large, The smaller the density difference, the smaller these values the smaller the pigment particle size. As the ink absorbing material is added with nano particles, the heat-resistant stability and the ultraviolet-resistant stability of the ink-absorbing material are improved, the addition of the nano-particles plays a protective role on the ink-absorbing material, and the service life of the ink-absorbing material is improved. When the amount of the adhesive is increased from 10% to 25%, the pore volume of the ink-absorbing material is reduced, the average pore diameter is reduced, the air permeability is weakened, the macro-roughness of the surface of the ink-absorbing layer becomes small, the surface free energy of the ink-absorbing material can be reduced, and the ink absorption is reduced. the amount of the adhesive is increased, the film forming property of the ink-absorbing layer is enhanced, and the thermal stability of the ink-absorbing material is reduced. Therefore, in this paper, the amount of adhesive used to prepare the nano-ink-absorbing material is generally not more than 20% considering the factors such as cost and the influence of the adhesive on the performance of the nano composite ink-absorbing material.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;中國(guó)將放開(kāi)廢舊PET整瓶進(jìn)口[J];國(guó)外塑料;2009年11期
2 韓美琳;;荷蘭國(guó)家礦業(yè)公司PET回收裝置能力增加一倍[J];聚酯工業(yè);1990年03期
3 黃興山;;第13屆全球PET鏈產(chǎn)品等年會(huì)簡(jiǎn)要介紹[J];合成技術(shù)及應(yīng)用;2009年02期
4 ;中國(guó)發(fā)布廢PET整瓶進(jìn)口規(guī)定[J];國(guó)外塑料;2010年11期
5 張明;;連續(xù)法PET生產(chǎn)的技術(shù)進(jìn)展[J];金山油化纖;1987年03期
6 周麗娟;杜邦的新型PET短纖維[J];合成纖維;1988年01期
7 高乃奎;吳南屏;謝大榮;;熱電作用下PET結(jié)晶結(jié)構(gòu)的轉(zhuǎn)變及其性能研究[J];塑料;1990年01期
8 何祚云,熊遠(yuǎn)凡,任東方,劉欣;用PET廢料制備對(duì)苯二甲酸二辛酯新工藝[J];精細(xì)石油化工;1997年03期
9 ;中國(guó)將放開(kāi)廢舊PET整瓶進(jìn)口[J];中國(guó)包裝工業(yè);2009年12期
10 ;PET回收的增長(zhǎng)率下降到25%[J];化工文摘;2000年07期
相關(guān)會(huì)議論文 前10條
1 黃力平;;PET在人類隨意運(yùn)動(dòng)控制研究中的應(yīng)用[A];第三屆全國(guó)康復(fù)醫(yī)學(xué)青年學(xué)術(shù)會(huì)議論文集[C];1999年
2 趙慶章;楊宇;張國(guó)耀;;PET/蒙脫土復(fù)合材料的研究與開(kāi)發(fā)[A];第二屆功能性紡織品及納米技術(shù)應(yīng)用研討會(huì)論文集[C];2002年
3 史源;金榕兵;趙錦寧;唐仕芳;李華強(qiáng);;PET在新生兒缺氧缺血性腦病的初步臨床應(yīng)用[A];全國(guó)圍產(chǎn)醫(yī)學(xué)專題學(xué)術(shù)研討會(huì)論文匯編[C];2007年
4 陳為棟;劉濟(jì);顧幸生;;PET固相聚合建模與控制研究[A];上海市化學(xué)化工學(xué)會(huì)2006年度學(xué)術(shù)年會(huì)論文摘要集[C];2006年
5 楊國(guó)仁;;PET與放療計(jì)劃[A];全國(guó)PET/CT新技術(shù)研討會(huì)(學(xué)習(xí)班)暨PET讀片會(huì)資料匯編[C];2005年
6 許向彬;李忠明;楊鳴波;謝邦互;楊偉;;導(dǎo)電原位微纖化CB/PET/PE復(fù)合材料:電阻-溫度效應(yīng)[A];2005年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2005年
7 郭增山;王棟;劉克忠;朱長(zhǎng)進(jìn);;用于PET阻燃的聚季戊四醇磷酸酯的合成、表征[A];第七屆全國(guó)磷化學(xué)化工暨第四屆海峽化學(xué)生物學(xué)、生物技術(shù)與醫(yī)藥發(fā)展討論會(huì)論文集[C];2006年
8 杜斌;楊睿;謝續(xù)明;;PET的濕熱老化機(jī)理研究[A];2010年全國(guó)高分子材料科學(xué)與工程研討會(huì)學(xué)術(shù)論文集(上冊(cè))[C];2010年
9 殷國(guó)蓉;郭衛(wèi)紅;高原冀;吳馳飛;;回收PET塑料的低溫固相反應(yīng)擠出[A];2004年材料科學(xué)與工程新進(jìn)展[C];2004年
10 趙春雷;陳巧軍;葛玲娟;王艦;;~(18)F-FDG和11C-蛋氨酸PET對(duì)腦腫瘤鑒別診斷效能的薈萃分析[A];首屆浙江省青年核醫(yī)學(xué)與分子影像論壇暨浙江省第十三屆核醫(yī)學(xué)與放射醫(yī)學(xué)防護(hù)學(xué)術(shù)會(huì)議論文匯編[C];2013年
相關(guān)重要報(bào)紙文章 前10條
1 陳家榮;我國(guó)發(fā)布廢PET整瓶進(jìn)口規(guī)定[N];中國(guó)食品質(zhì)量報(bào);2010年
2 本報(bào)記者 施建平;中國(guó)發(fā)布廢PET整瓶進(jìn)口規(guī)定[N];中國(guó)食品報(bào);2010年
3 本報(bào)記者 李彩霞;阿特拉斯·科普柯最新節(jié)能PET吹瓶壓縮機(jī)亮相北京[N];中國(guó)包裝報(bào);2008年
4 梅子;機(jī)器人PET/磁共振填補(bǔ)了國(guó)際空白[N];中國(guó)改革報(bào);2009年
5 記者 何勇;國(guó)產(chǎn)PET在沈陽(yáng)研制成功[N];人民日?qǐng)?bào)海外版;2009年
6 李穎;機(jī)器人PET/磁共振填補(bǔ)國(guó)際空白[N];科技日?qǐng)?bào);2009年
7 施建平;中國(guó)政府有望撤銷禁止直接進(jìn)口廢舊PET整瓶的規(guī)定[N];中國(guó)食品報(bào);2010年
8 見(jiàn)習(xí)記者 任悅鳴 通訊員 羅玲玲;我國(guó)首個(gè)PET循環(huán)產(chǎn)業(yè)化項(xiàng)目落戶天津[N];中國(guó)航天報(bào);2013年
9 本報(bào)記者 馬艷紅;全球首臺(tái)數(shù)字PET在我國(guó)誕生[N];中國(guó)醫(yī)藥報(bào);2012年
10 興鶴;原料價(jià)格:PET飛漲原動(dòng)力[N];中國(guó)石化報(bào);2005年
相關(guān)博士學(xué)位論文 前10條
1 吳捷;PET基材納米吸墨材料的制備及性能研究[D];哈爾濱工業(yè)大學(xué);2017年
2 黎作鵬;體域納米網(wǎng)絡(luò)關(guān)鍵技術(shù)研究[D];哈爾濱工程大學(xué);2014年
3 張正飛;一維氧化鎢納米材料無(wú)催化劑生長(zhǎng)的原位透射電鏡研究[D];浙江大學(xué);2017年
4 劉敬東;銅納米顆粒合成及其低溫?zé)Y(jié)互連行為研究[D];哈爾濱工業(yè)大學(xué);2017年
5 谷志遠(yuǎn);基于納米線的光學(xué)微腔和納米激光器[D];哈爾濱工業(yè)大學(xué);2016年
6 潘金彬;生物活性蛋白導(dǎo)向簡(jiǎn)易構(gòu)建新型高效安全的納米探針用于腫瘤的診療[D];天津醫(yī)科大學(xué);2017年
7 戴清源;基于乳清分離蛋白修飾的低環(huán)境敏感型納米顆粒構(gòu)建與穩(wěn)定機(jī)制[D];江南大學(xué);2017年
8 劉洋;多功能納米膠束體系聯(lián)合聲動(dòng)力與化療靶向治療肝癌的研究[D];天津醫(yī)科大學(xué);2017年
9 任勃;鎳鈷基氧化物納米纖維的靜電紡絲法制備及電化學(xué)性能研究[D];哈爾濱工程大學(xué);2014年
10 趙婕;基于單根金屬氧化物一維微/納米線的雙電極結(jié)構(gòu)器件的性能研究[D];南昌大學(xué);2017年
相關(guān)碩士學(xué)位論文 前10條
1 朱笑天;金納米棒的制備與修飾及其在環(huán)境污染物檢測(cè)中的應(yīng)用[D];鄭州大學(xué);2017年
2 任雪利;納米氣泡對(duì)污染物的吸附及其影響因素探究[D];上海師范大學(xué);2017年
3 劉曉慧;硅表面納米結(jié)構(gòu)設(shè)計(jì)與計(jì)算[D];青島大學(xué);2017年
4 崔行恒;磁性元素?fù)诫s氧化銦錫納米結(jié)構(gòu)的制備與物性研究[D];上海師范大學(xué);2017年
5 任健;面向太陽(yáng)能燃料制備的納米異質(zhì)結(jié)材料的研究[D];天津大學(xué);2016年
6 閆貴花;靜電紡制備聚丙烯腈/納米纖維素基多孔碳材料及電學(xué)性能研究[D];鄭州大學(xué);2017年
7 張路f,
本文編號(hào):2303421
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2303421.html