廢舊橡膠粉與彈性體復合增韌托輥用PA6聚合物基耐磨復合材料的應(yīng)用研究
[Abstract]:The roller has the name of "heart" in the belt conveyer. At present, there are many problems in the process of using the existing roller materials, such as ceramic roller overweight, brittleness; The wear resistance of metal roller is poor and the burr is easy to be produced in long time operation, and the burr produced is very easy to reduce the service life of conveyer belt, and the mechanical properties of plastic roller are poor. These factors limit the popularization and application of the roller. On the basis of the previous experiment in the experimental group, polyamide 6 (PA6) was selected as the matrix material, POE-g-MAH as the main toughening agent and waste rubber powder as the secondary toughening agent to modify the PA6 composite, and the experimental design was carried out. Mechanism analysis, performance testing and other related studies were carried out. The main work is as follows: firstly, the waste rubber powder (40 mesh, 60 mesh, 80 mesh) is used to modify the PA6 composite material. It is found that the content of waste rubber powder is increased to 5% when the content of waste rubber powder is increased to 5%. The impact strength of PA6 composites reached the maximum value, and the impact strength of the composites with 40 mesh, 60 mesh and 80 mesh waste rubber powder increased about 20.5% 40.9% and 53.8% respectively. The elongation at break increased about 56%, and the addition of waste rubber powder decreased the viscosity, melting point, crystallization temperature and thermal stability of the composite system. The toughening degree of the system is limited because of the waste rubber powder. Maleic anhydride grafted POE composite waste rubber powder was used to toughen and modify the system. The properties of POE-g-MAH and waste rubber powder with different mass ratio were studied, and the mechanical properties were analyzed. The optimum ratio of POE-g-MAH: waste rubber powder = 6:4.PA6 composite system is relatively complex. In order to investigate the effect of the content of compound toughening agent on the properties of PA6 composites, The modification of PA6 was studied by using the optimum proportion of compound toughening agent. It was found that when the content of compound toughening agent was 10, the impact strength increased from 6.3k J/m2 to 8.0 KJ / m2, which increased about 27kg / m2. The elongation at break increased from 22. 1% to 33. 2%, and the tensile strength decreased from the original 77.2MPa to 59. 4 MPa, which decreased by 23%, and the tensile strength decreased from 22. 1% to 33. 2%, and the tensile strength decreased from the original 77.2MPa to 59. 4 MPa. The bending strength decreased from the original 90.4MPa to 60.9 MPA, and the results of XRD and TGA showed that the addition of compound toughening agent improved the crystallization rate of PA6, but the crystallinity, the integrity of crystal structure and the heat resistance of PA6 were decreased. Finally, the composite toughening agent was used to modify PA6 composites. When the content of compound toughener was 15%, the tensile strength decreased from 85.6MPa to 70.2MPa, and the bending strength decreased from 130.2MPa to 90.9MPa, which decreased about 30.2MPa. The notched impact strength increased about 2.5 times from 5.1MPa to 18.1MPa, and the elongation at break increased from 6.3% to 19.4MPA, which increased by 2.07 times. The results of DSC and TGA show that the melting point and thermal stability of the composites decrease and the crystallization temperature increases.
【學位授予單位】:湖南工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:TB332
【參考文獻】
相關(guān)期刊論文 前10條
1 鐘明強,孫莉,賈虹;尼龍6/納米Al_2O_3復合材料與銅摩擦副的摩擦磨損性能[J];工程塑料應(yīng)用;2004年06期
2 劉廣建;曾新芳;;新型UHMWPE托輥的研制與應(yīng)用[J];工程塑料應(yīng)用;2009年05期
3 王沖;郝源增;郝建鑫;劉文志;吳建偉;;高光澤高玻璃纖維含量增強增韌PA6復合材料的開發(fā)[J];工程塑料應(yīng)用;2010年09期
4 張躍;桑建華;;耐磨陶瓷托輥的研制[J];山東陶瓷;2007年02期
5 李巖,張勇,張隱西;廢橡膠膠粉/HDPE/POE熱塑性彈性體的動態(tài)硫化[J];高分子材料科學與工程;2004年06期
6 姚洪;楊寅威;黃嘉興;;尼龍6/蒙脫土納米復合材料的摩擦學特性及磨損機理[J];機械工程材料;2006年09期
7 張宇光,李霞;熱塑性彈性體增韌聚丙烯的研究[J];哈爾濱理工大學學報;2003年02期
8 欒振輝,唐兵,王義民;托輥新材料的試驗研究[J];煤炭科學技術(shù);2000年06期
9 盧杉;范彩霞;周艷霞;;改性聚氯乙烯托輥的研制[J];礦山機械;2009年11期
10 馬培瑜,,孟憲德;降低橡膠配方設(shè)計成本的途徑[J];青島化工學院學報;1996年01期
相關(guān)博士學位論文 前1條
1 游一蘭;增強PA6基多相摩擦材料及其摩擦磨損特性研究[D];中南大學;2014年
相關(guān)碩士學位論文 前5條
1 吳新正;石英砂質(zhì)陶瓷托輥的制備及性能研究[D];海南大學;2011年
2 陳珍明;廢舊橡膠(WTR)的超細粉碎及WTR/PP/SBS/鐵復合材料結(jié)構(gòu)與性能的研究[D];福建師范大學;2005年
3 付強;無鹵阻燃增韌增強PA66的研究[D];華南理工大學;2010年
4 鄧凌云;托輥用耐磨尼龍6復合材料的研制[D];湖南大學;2013年
5 謝磊;托輥用耐低溫尼龍6基耐磨復合材料的研制[D];湖南大學;2013年
本文編號:2294829
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2294829.html