天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 材料論文 >

基于高頻電磁—超聲混合懸浮的無容器裝置設(shè)計(jì)及實(shí)驗(yàn)研究

發(fā)布時(shí)間:2018-10-11 09:25
【摘要】:隨著材料科學(xué)的快速發(fā)展,人們對(duì)材料性能的要求隨之提高,即需要開發(fā)出更多的新型材料。無容器技術(shù)因其獨(dú)有的特性,在新型材料的開發(fā)領(lǐng)域具有顯著的優(yōu)勢(shì)。結(jié)合以往的研究和各種無容器技術(shù)的特點(diǎn),本文提出基于高頻電磁和超聲駐波混合懸浮的方式對(duì)材料進(jìn)行無容器熔煉和凝固。首先概述了電磁懸浮技術(shù)和超聲駐波懸浮技術(shù)的原理、研究現(xiàn)狀和應(yīng)用,以及在電磁懸浮熔煉后常用的無容器凝固方式。設(shè)計(jì)了電控調(diào)節(jié)平臺(tái),實(shí)現(xiàn)了實(shí)驗(yàn)樣品在超聲駐波懸浮和電磁懸浮中的懸浮位置重合以及調(diào)節(jié)混合實(shí)驗(yàn)中的反射端。根據(jù)實(shí)驗(yàn)?zāi)康?通過ANSYS軟件對(duì)不同凹球面半徑的輻射端和反射端組合進(jìn)行仿真分析,得出能提供較大聲壓值的組合方式。根據(jù)球形樣品在多匝線圈中所受懸浮力理論,對(duì)目前常用的四種感應(yīng)線圈類型進(jìn)行MATLAB仿真,得出各種類型線圈的結(jié)構(gòu)參數(shù)與樣品所受懸浮力之間的關(guān)系及各類型線圈之間的差異。通過仿真分析得出:隨著懸浮線圈最初匝半徑、穩(wěn)定線圈匝數(shù)、懸浮線圈半錐角和穩(wěn)定線圈半錐角的增加,四種類型線圈的懸浮力都非線性減小;隨著平面間距、線圈匝間距和懸浮線圈匝數(shù)的增加,四種類型線圈的懸浮力都非線性增加;圓柱形線圈提供的懸浮力一般大于螺線形線圈。此外,通過實(shí)驗(yàn)驗(yàn)證了實(shí)驗(yàn)結(jié)果與仿真結(jié)果相一致。通過MAXWELL對(duì)感應(yīng)線圈進(jìn)行電磁渦流場(chǎng)分析,并把計(jì)算得到的電磁渦流場(chǎng)作為ANSYS瞬態(tài)溫度場(chǎng)分析的熱源進(jìn)行聯(lián)合仿真。仿真結(jié)果表明:隨著穩(wěn)定線圈匝數(shù)、懸浮線圈半錐角和穩(wěn)定線圈半錐角的增加,懸浮樣品最高溫度減小;隨著懸浮位置的增加,懸浮樣品最高溫度增加,即線圈底部比其他位置的溫度更高;隨著樣品半徑的增加,懸浮樣品最高溫度顯現(xiàn)先增加后減小的趨勢(shì)。其中最初匝半徑、平面間距、匝間距、懸浮線圈匝數(shù)對(duì)樣品最高溫度的影響比較小。此外,通過實(shí)驗(yàn)初步驗(yàn)證了實(shí)驗(yàn)結(jié)果與仿真結(jié)果相一致。通過實(shí)驗(yàn)研究了感應(yīng)線圈結(jié)構(gòu)參數(shù)和樣品尺寸與實(shí)驗(yàn)樣品穩(wěn)定性之間的關(guān)系:較小直徑的實(shí)驗(yàn)樣品穩(wěn)定性比較好,在一定錐度范圍內(nèi)懸浮線圈半錐角越大穩(wěn)定性越好以及類型四的穩(wěn)定性最好。搭建了基于高頻電磁和超聲駐波混合懸浮的實(shí)驗(yàn)裝置,混合裝置主要包括超聲駐波懸浮裝置、高頻電磁懸浮裝置、循環(huán)水裝置、氬氣氛圍裝置和電控調(diào)節(jié)平臺(tái)五個(gè)部分。在空氣中和氬氣氛圍中分別對(duì)低熔點(diǎn)的錫樣品及熔點(diǎn)高的鋁樣品進(jìn)行懸浮熔煉和冷卻凝固實(shí)驗(yàn),實(shí)現(xiàn)了金屬在熔煉和冷卻凝固過程中徹底的無容器。
[Abstract]:With the rapid development of material science, the requirement of material properties is raised, that is, more new materials need to be developed. Because of its unique characteristics, containerless technology has significant advantages in the development of new materials. Based on the previous research and the characteristics of various containerless technologies, this paper presents a method of non-vessel melting and solidification based on the hybrid suspension of high frequency electromagnetic and ultrasonic standing wave. Firstly, the principle, research status and application of electromagnetic levitation technology and ultrasonic standing wave suspension technology, as well as the usual containerless solidification methods after electromaglev melting are summarized. The electronic control platform is designed to realize the coincidence of the suspension position of the experimental samples in the ultrasonic standing wave levitation and the electric magnetic levitation and to adjust the reflector in the mixed experiment. According to the experimental purpose, the combination of radiator and reflector of different concave spherical radius is simulated and analyzed by ANSYS software, and the combination mode which can provide larger sound pressure value is obtained. Based on the suspension force theory of spherical samples in multi-turn coils, four kinds of induction coils are simulated by MATLAB. The relationship between the structure parameters of various types of coils and the levitation force of the samples and the differences between the different types of coils are obtained. The simulation results show that with the increase of the initial turn radius, the number of stable coil turns, the half cone angle of suspension coil and the half cone angle of stabilized coil, the levitation force of four types of coils decreases nonlinear with the plane spacing. The levitation force of the four types of coils increases nonlinearly with the increase of the coil spacing and the number of hoisting coils, and the suspension force provided by cylindrical coils is generally greater than that provided by spiral coils. In addition, the experimental results are in agreement with the simulation results. The electromagnetic eddy current field of induction coil is analyzed by MAXWELL, and the calculated electromagnetic eddy current field is used as the heat source of ANSYS transient temperature field analysis. The simulation results show that the maximum temperature of the suspension sample decreases with the increase of the number of stable coil turns, the half cone angle of the suspension coil and the half cone angle of the stabilized coil, and the maximum temperature of the suspended sample increases with the increase of the suspension position. That is, the temperature at the bottom of the coil is higher than that at other locations, and with the increase of the sample radius, the maximum temperature of the suspended sample increases first and then decreases. Among them, the initial turn radius, plane spacing, turn spacing and the number of turns of suspension coil have little effect on the maximum temperature of the sample. In addition, the experimental results are in agreement with the simulation results. The relationship between the structure parameters and sample size of the induction coil and the stability of the experimental sample is studied experimentally: the stability of the experimental sample with smaller diameter is better than that of the experimental sample. In a certain taper range, the stability of suspension coil is better as the half cone angle is larger and the stability of type 4 is the best. The experimental equipment based on high frequency electromagnetic and ultrasonic standing wave mixed suspension is built. The mixing device mainly includes ultrasonic standing wave suspension device, high frequency electric magnetic levitation device, circulating water device, argon atmosphere device and electronic control adjusting platform. Suspension melting and cooling solidification experiments were carried out on tin samples with low melting point and aluminum samples with high melting point in air and argon atmosphere respectively.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB30

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李錦橋;中頻感應(yīng)線圈的改進(jìn)[J];機(jī)械工人(熱加工);1992年04期

2 胡達(dá)剛;感應(yīng)線圈在化學(xué)實(shí)驗(yàn)中的應(yīng)用[J];化學(xué)教育;2003年06期

3 陳寶琳;感應(yīng)線圈的絕緣處理[J];電爐;1974年03期

4 李亞欣;張國(guó)濱;;熱送直軋過程中感應(yīng)線圈壁厚對(duì)補(bǔ)熱效率的影響[J];河北理工學(xué)院學(xué)報(bào);2006年01期

5 丁茹;林凌;韓曉斌;李剛;;微型感應(yīng)線圈車輛檢測(cè)器的穩(wěn)定性研究[J];天津工業(yè)大學(xué)學(xué)報(bào);2006年04期

6 Fabien Marquis;宋欽;;感應(yīng)技術(shù)—哪些是新的![J];機(jī)械工人;2006年04期

7 孔祥群;;工頻電爐小改進(jìn)[J];機(jī)械工人;1984年08期

8 法林;感應(yīng)線圈系系數(shù)k和介質(zhì)單元環(huán)兒何因子g的一種近似推導(dǎo)方法[J];測(cè)井技術(shù);1985年06期

9 ;電感耦合高頻等離子發(fā)光分光分析(ICP)[J];化學(xué)世界;1982年11期

10 李鳳層;雷彬;李治源;;單級(jí)感應(yīng)線圈發(fā)射器參數(shù)分析與動(dòng)態(tài)特性計(jì)算[J];兵器材料科學(xué)與工程;2010年04期

相關(guān)會(huì)議論文 前3條

1 任國(guó)兵;;感應(yīng)線圈因數(shù)的理論推導(dǎo)[A];電波科學(xué)學(xué)報(bào)[C];2011年

2 張國(guó)安;朱忠尼;;異步感應(yīng)線圈發(fā)射器內(nèi)部磁場(chǎng)分析[A];2011中國(guó)電工技術(shù)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2011年

3 張濤;國(guó)偉;蘇子舟;張洪海;;同步感應(yīng)線圈炮磁耦合仿真研究[A];2011中國(guó)電工技術(shù)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2011年

相關(guān)重要報(bào)紙文章 前5條

1 河南 馮長(zhǎng)軍;利用感應(yīng)線圈完成的靜電實(shí)驗(yàn)[N];電子報(bào);2004年

2 ;數(shù)位輸入原理簡(jiǎn)介[N];計(jì)算機(jī)世界;2002年

3 龐紹甜;鬧鐘的晶體管驅(qū)動(dòng)電路[N];北京電子報(bào);2000年

4 四川 陳偉鑫編譯;金屬探測(cè)棒[N];電子報(bào);2004年

5 ;自動(dòng)超大口徑電磁感應(yīng)鋁箔封口機(jī)[N];中國(guó)包裝報(bào);2006年

相關(guān)碩士學(xué)位論文 前8條

1 王義斌;高強(qiáng)鋼矩形管感應(yīng)強(qiáng)化組織與性能控制研究[D];哈爾濱工業(yè)大學(xué);2015年

2 李道波;航空感應(yīng)線圈位姿數(shù)據(jù)采集系統(tǒng)研發(fā)[D];北華航天工業(yè)學(xué)院;2017年

3 張莎莎;基于高頻電磁—超聲混合懸浮的無容器裝置設(shè)計(jì)及實(shí)驗(yàn)研究[D];吉林大學(xué);2017年

4 鄭杰;感應(yīng)線圈對(duì)磁浮系統(tǒng)性能影響研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2006年

5 李維;感應(yīng)電磁抹拭技術(shù)研究[D];浙江大學(xué);2014年

6 李雙;地磁感應(yīng)線圈在彈體運(yùn)動(dòng)參數(shù)測(cè)量中的應(yīng)用研究[D];南京理工大學(xué);2012年

7 李雷;電源頻率及感應(yīng)線圈結(jié)構(gòu)對(duì)電磁懸浮熔煉的影響研究[D];河北大學(xué);2010年

8 張貝貝;基于視頻與感應(yīng)線圈技術(shù)融合的高速公路交通事件檢測(cè)系統(tǒng)研究[D];長(zhǎng)安大學(xué);2012年

,

本文編號(hào):2263687

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2263687.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶3a5a0***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
丰满人妻一二三区av| 色狠狠一区二区三区香蕉蜜桃| 国产精品亚洲二区三区| 欧美色婷婷综合狠狠爱| 国产亚洲精品一二三区| 日本不卡视频在线观看| 亚洲最新中文字幕一区| 日韩夫妻午夜性生活视频| 国产一区二区三区av在线| 国产精品伦一区二区三区四季| 在线观看中文字幕91| 精品国产91亚洲一区二区三区| 欧美大胆美女a级视频| 亚洲中文字幕在线观看黑人| 欧美日韩精品综合一区| 欧美又黑又粗大又硬又爽| 夜色福利久久精品福利| 熟女乱一区二区三区四区| 久久国产亚洲精品赲碰热| 成年女人午夜在线视频| 91人妻人人精品人人爽| 国产韩国日本精品视频| 99久只有精品免费视频播放| 亚洲国产av在线观看一区| 亚洲第一区欧美日韩在线| 亚洲综合一区二区三区在线| 国产精品欧美激情在线观看| 欧美二区视频在线观看| 一区二区三区精品人妻| 国产又大又猛又粗又长又爽| 成人三级视频在线观看不卡 | 日韩欧美二区中文字幕| 在线观看日韩欧美综合黄片| 色婷婷人妻av毛片一区二区三区| 国产精品一区二区视频| 国产亚洲精品香蕉视频播放| 欧美一区二区三区播放| 午夜精品在线观看视频午夜| 国产av一二三区在线观看| 亚洲欧美日韩熟女第一页| 国产乱久久亚洲国产精品|