基于高頻電磁—超聲混合懸浮的無容器裝置設(shè)計(jì)及實(shí)驗(yàn)研究
[Abstract]:With the rapid development of material science, the requirement of material properties is raised, that is, more new materials need to be developed. Because of its unique characteristics, containerless technology has significant advantages in the development of new materials. Based on the previous research and the characteristics of various containerless technologies, this paper presents a method of non-vessel melting and solidification based on the hybrid suspension of high frequency electromagnetic and ultrasonic standing wave. Firstly, the principle, research status and application of electromagnetic levitation technology and ultrasonic standing wave suspension technology, as well as the usual containerless solidification methods after electromaglev melting are summarized. The electronic control platform is designed to realize the coincidence of the suspension position of the experimental samples in the ultrasonic standing wave levitation and the electric magnetic levitation and to adjust the reflector in the mixed experiment. According to the experimental purpose, the combination of radiator and reflector of different concave spherical radius is simulated and analyzed by ANSYS software, and the combination mode which can provide larger sound pressure value is obtained. Based on the suspension force theory of spherical samples in multi-turn coils, four kinds of induction coils are simulated by MATLAB. The relationship between the structure parameters of various types of coils and the levitation force of the samples and the differences between the different types of coils are obtained. The simulation results show that with the increase of the initial turn radius, the number of stable coil turns, the half cone angle of suspension coil and the half cone angle of stabilized coil, the levitation force of four types of coils decreases nonlinear with the plane spacing. The levitation force of the four types of coils increases nonlinearly with the increase of the coil spacing and the number of hoisting coils, and the suspension force provided by cylindrical coils is generally greater than that provided by spiral coils. In addition, the experimental results are in agreement with the simulation results. The electromagnetic eddy current field of induction coil is analyzed by MAXWELL, and the calculated electromagnetic eddy current field is used as the heat source of ANSYS transient temperature field analysis. The simulation results show that the maximum temperature of the suspension sample decreases with the increase of the number of stable coil turns, the half cone angle of the suspension coil and the half cone angle of the stabilized coil, and the maximum temperature of the suspended sample increases with the increase of the suspension position. That is, the temperature at the bottom of the coil is higher than that at other locations, and with the increase of the sample radius, the maximum temperature of the suspended sample increases first and then decreases. Among them, the initial turn radius, plane spacing, turn spacing and the number of turns of suspension coil have little effect on the maximum temperature of the sample. In addition, the experimental results are in agreement with the simulation results. The relationship between the structure parameters and sample size of the induction coil and the stability of the experimental sample is studied experimentally: the stability of the experimental sample with smaller diameter is better than that of the experimental sample. In a certain taper range, the stability of suspension coil is better as the half cone angle is larger and the stability of type 4 is the best. The experimental equipment based on high frequency electromagnetic and ultrasonic standing wave mixed suspension is built. The mixing device mainly includes ultrasonic standing wave suspension device, high frequency electric magnetic levitation device, circulating water device, argon atmosphere device and electronic control adjusting platform. Suspension melting and cooling solidification experiments were carried out on tin samples with low melting point and aluminum samples with high melting point in air and argon atmosphere respectively.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB30
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李錦橋;中頻感應(yīng)線圈的改進(jìn)[J];機(jī)械工人(熱加工);1992年04期
2 胡達(dá)剛;感應(yīng)線圈在化學(xué)實(shí)驗(yàn)中的應(yīng)用[J];化學(xué)教育;2003年06期
3 陳寶琳;感應(yīng)線圈的絕緣處理[J];電爐;1974年03期
4 李亞欣;張國(guó)濱;;熱送直軋過程中感應(yīng)線圈壁厚對(duì)補(bǔ)熱效率的影響[J];河北理工學(xué)院學(xué)報(bào);2006年01期
5 丁茹;林凌;韓曉斌;李剛;;微型感應(yīng)線圈車輛檢測(cè)器的穩(wěn)定性研究[J];天津工業(yè)大學(xué)學(xué)報(bào);2006年04期
6 Fabien Marquis;宋欽;;感應(yīng)技術(shù)—哪些是新的![J];機(jī)械工人;2006年04期
7 孔祥群;;工頻電爐小改進(jìn)[J];機(jī)械工人;1984年08期
8 法林;感應(yīng)線圈系系數(shù)k和介質(zhì)單元環(huán)兒何因子g的一種近似推導(dǎo)方法[J];測(cè)井技術(shù);1985年06期
9 ;電感耦合高頻等離子發(fā)光分光分析(ICP)[J];化學(xué)世界;1982年11期
10 李鳳層;雷彬;李治源;;單級(jí)感應(yīng)線圈發(fā)射器參數(shù)分析與動(dòng)態(tài)特性計(jì)算[J];兵器材料科學(xué)與工程;2010年04期
相關(guān)會(huì)議論文 前3條
1 任國(guó)兵;;感應(yīng)線圈因數(shù)的理論推導(dǎo)[A];電波科學(xué)學(xué)報(bào)[C];2011年
2 張國(guó)安;朱忠尼;;異步感應(yīng)線圈發(fā)射器內(nèi)部磁場(chǎng)分析[A];2011中國(guó)電工技術(shù)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2011年
3 張濤;國(guó)偉;蘇子舟;張洪海;;同步感應(yīng)線圈炮磁耦合仿真研究[A];2011中國(guó)電工技術(shù)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2011年
相關(guān)重要報(bào)紙文章 前5條
1 河南 馮長(zhǎng)軍;利用感應(yīng)線圈完成的靜電實(shí)驗(yàn)[N];電子報(bào);2004年
2 ;數(shù)位輸入原理簡(jiǎn)介[N];計(jì)算機(jī)世界;2002年
3 龐紹甜;鬧鐘的晶體管驅(qū)動(dòng)電路[N];北京電子報(bào);2000年
4 四川 陳偉鑫編譯;金屬探測(cè)棒[N];電子報(bào);2004年
5 ;自動(dòng)超大口徑電磁感應(yīng)鋁箔封口機(jī)[N];中國(guó)包裝報(bào);2006年
相關(guān)碩士學(xué)位論文 前8條
1 王義斌;高強(qiáng)鋼矩形管感應(yīng)強(qiáng)化組織與性能控制研究[D];哈爾濱工業(yè)大學(xué);2015年
2 李道波;航空感應(yīng)線圈位姿數(shù)據(jù)采集系統(tǒng)研發(fā)[D];北華航天工業(yè)學(xué)院;2017年
3 張莎莎;基于高頻電磁—超聲混合懸浮的無容器裝置設(shè)計(jì)及實(shí)驗(yàn)研究[D];吉林大學(xué);2017年
4 鄭杰;感應(yīng)線圈對(duì)磁浮系統(tǒng)性能影響研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2006年
5 李維;感應(yīng)電磁抹拭技術(shù)研究[D];浙江大學(xué);2014年
6 李雙;地磁感應(yīng)線圈在彈體運(yùn)動(dòng)參數(shù)測(cè)量中的應(yīng)用研究[D];南京理工大學(xué);2012年
7 李雷;電源頻率及感應(yīng)線圈結(jié)構(gòu)對(duì)電磁懸浮熔煉的影響研究[D];河北大學(xué);2010年
8 張貝貝;基于視頻與感應(yīng)線圈技術(shù)融合的高速公路交通事件檢測(cè)系統(tǒng)研究[D];長(zhǎng)安大學(xué);2012年
,本文編號(hào):2263687
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2263687.html