考慮縱向振動的功能梯度材料梁的非線性動力學(xué)行為分析
[Abstract]:Functionally graded material (Functionally graded material,FGM) is a new type of heterogeneous composite material, which combines two or more different materials according to a certain law of material composition. It can eliminate the sudden change of physical properties and stress concentration between two kinds of materials, and can combine the advantages of two kinds of materials, and then be widely used in aerospace, medical, mechanical, electronic engineering and other fields. Beam is one of the most common structural components in practical engineering. It is always one of the research contents of mechanics workers to study the static and dynamic behavior of beam under temperature load, mechanical load and other environments. At present, most of the researches on the dynamic vibration of functionally graded material beams are carried out under the condition of ignoring the longitudinal vibration. In this paper, the nonlinear dynamic mechanical behavior of functionally graded material beams under mechanical load is studied under the consideration of longitudinal vibration. The main work contents can be summarized as follows: 1. The dynamic behavior of Euler beams with functionally graded materials considering longitudinal vibration is analyzed. Based on the classical Euler beam theory, the nonlinear vibration model of functionally graded material beams under transverse uniform load is established. By using the variational principle, a geometric nonlinear dynamic differential equation considering longitudinal vibration is derived. The boundary value problem of the equation and boundary condition is solved numerically by shooting method. In this paper, the nonlinear transverse vibration of functionally graded material (Euler) beams is studied, and the natural frequencies of the transverse vibration are obtained, and then the vibration of Euler beams with functionally graded materials is studied when the effect of longitudinal vibration is considered. According to the material parameters, the effects of gradient parameters, ratio of length to height and boundary conditions on the dynamic characteristics of FGM beams are discussed. The results show that the frequency of functionally graded material Euler beams will be decreased when longitudinal vibration is taken into account, but the degree of reduction is within the acceptable range. The dynamic behavior of sinusoidal shear deformed beams with functionally graded materials considering longitudinal vibration is analyzed. Based on the theory of sinusoidal shear deformation beam, the mathematical model of sinusoidal shear beam vibration with functionally graded materials is established, and the dynamic differential equation considering longitudinal vibration is derived by using the variational principle. The boundary value problem composed of the differential equation and the corresponding boundary conditions is still numerically solved by the shooting method, and the frequency of the functionally gradient sinusoidal shear deformation beam is obtained when the longitudinal vibration is considered. The calculated results are in good agreement with the existing literatures. Then, the results of Euler beam and sinusoidal shear in chapter 2 under the same conditions are compared. The results show that the frequency of FGM beam is lower than that of classical beam model under sinusoidal shear theory, and this model is closer to practice than that of classical beam model. Finally, the dynamic characteristics of FGM sinusoidal shear deformation beam with different ratio of length to height and boundary condition are analyzed.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB34
【參考文獻】
相關(guān)期刊論文 前10條
1 常學(xué)平;成志強;柳葆生;;高階剪切理論下梯度直梁在熱環(huán)境中的靜動態(tài)響應(yīng)分析[J];四川理工學(xué)院學(xué)報(自然科學(xué)版);2016年03期
2 王捷;;功能梯度材料梁結(jié)構(gòu)的穩(wěn)定性分析[J];甘肅科學(xué)學(xué)報;2016年01期
3 鄒冬林;劉翎;饒柱石;塔娜;;利用有限元法與打靶法的縱橫耦合軸系主共振分析[J];振動工程學(xué)報;2016年01期
4 趙亮;胡振東;;軸向運動功能梯度懸臂梁動力學(xué)分析[J];振動與沖擊;2016年02期
5 汪亞運;彭旭龍;陳得良;;軸向功能梯度變截面梁的自由振動研究[J];固體力學(xué)學(xué)報;2015年05期
6 李成;隨歲寒;楊昌錦;;受初應(yīng)力作用的軸向運動功能梯度梁的動力學(xué)分析[J];工程力學(xué);2015年10期
7 邢譽峰;梁昆;;梁縱向與橫向耦合非線性振動分析[J];北京航空航天大學(xué)學(xué)報;2015年08期
8 張馳;于耕;張碩;;功能梯度材料梁的非線性研究[J];科學(xué)技術(shù)與工程;2014年20期
9 張靜華;魏軍揚;;DQ法求解FGM Levinson梁的靜態(tài)彎曲問題[J];華東交通大學(xué)學(xué)報;2014年03期
10 趙鳳群;王忠民;路小平;;軸向運動功能梯度Timoshenko梁穩(wěn)定性分析[J];振動與沖擊;2014年02期
相關(guān)會議論文 前1條
1 高陽;王敏中;;梁理論的發(fā)展歷史及其方法論[A];第三屆全國力學(xué)史與方法論學(xué)術(shù)研討會論文集[C];2007年
相關(guān)碩士學(xué)位論文 前4條
1 李秋全;功能梯度板彎曲有限元分析[D];揚州大學(xué);2013年
2 劉麗威;彈性地基上功能梯度梁、板的動力學(xué)特性分析[D];南京航空航天大學(xué);2012年
3 黃永玉;橫向荷載下梁的靜、動力學(xué)特性研究[D];蘭州理工大學(xué);2011年
4 龔云;功能梯度材料梁彎曲、屈曲和自由振動分析[D];蘭州理工大學(xué);2009年
,本文編號:2262523
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2262523.html