磁性納米粒子的電化學(xué)轉(zhuǎn)化及生物傳感應(yīng)用
[Abstract]:Nano-particle electrochemistry opens up a new direction of nanotechnology and exhibits attractive prospects in many fields. Nano-composites can bond multiple components and even show the synergistic effect. It is widely used. Its synthetic methods and performance development are the leading and difficult points. Magnetic nanoparticles have attracted much attention based on unique magnetic mechanics, electrical, thermal and other physical/ chemical properties, widely used in the fields of separation and enrichment and light-induced fever treatment, but their electrochemical development is rarely reported. Based on its abundant and excellent properties and functions, combined with flexible electrochemical technology, it is expected that the properties of magnetic materials can be further enriched, and the multifunctional magnetic nano composite material can be prepared, and the novel biosensor is developed. In this paper, we reviewed the progress of electrochemical biosensor, magnetic nanoparticles and Prussian blue. On these bases, we use a variety of electrochemical techniques to convert ferric oxide magnetic nanoparticles into Prussian blue with high electrochemical activity and catalytic properties in a mild environment, and prepare Prussian blue-gold composite material in combination with gold co-deposition technique. A sandwich immunobiosensor and a non-labeled aptamer biosensor based on magnetic nanoparticles were developed. The main work is as follows: 1. The new method of electrochemically converting Fe2O3 magnetic nanoparticles (MNPs) into Prussian blue (PB) in neutral water phase system was developed and used to amplify and detect the avian influenza virus. In the neutral K3Fe (CN) 6 solution, under the control of the magnetic field, the gold electrode surface is subjected to high potential to trigger electrochemical oxygen evolution to form a locally strong acid environment to cause the magnetic nano-particles to chemically react to release iron ions; and then, a low-potential electrochemical reduction is applied to obtain the K4Fe (CN) 6 and the iron ion to generate Prussian blue. controlling oxidation potential and time can regulate Prussian blue generation speed and property. The method further expands its electrochemistry on the magnetic basis of MNPs, and generates Prussian blue with strong electrochemical activity under a neutral initial environment. Inspired by this, we further developed a sandwich-type immunobiosensor with MNPs as markers, and then efficiently amplified the signal based on the electrochemical properties of PB generated by the electrochemical conversion of MNPs markers to sensitively detect the avian influenza virus (H5N1). The detection range of the biosensor is 0.0025 HAU-0.16HAU (5? L sample), and the detection limit is 0.00074 HAU, which is one order of magnitude lower than that of the same type of sensor. PB-Au nanocomposites were prepared by a new method combining MNPs electrochemical conversion and gold electrodeposition technology and used for high performance Ampere chemical sensing. firstly, MNPs are fixed on the surface of the gold magnetic electrode by a magnetic field, and PB is obtained by adopting the developed electrochemical conversion method in the 2m M HAu Cl4, 1m M K3[Fe (CN) 6] and 0.1M K2SO4 solution, meanwhile, in the low potential process, the electroreduced gold and the PB are uniformly mixed, finally a PB-Au composite material is obtained. the size and the shape of the PB-Au nano composite can be controlled by controlling the proportion of the precursor. The morphology, electrochemical performance and catalytic performance were characterized by scanning electron microscope (SEM) and various electrochemical techniques, and compared with the conventional PB modified electrode. PB-Au nano material modified electrode has good conductivity, good testing stability, excellent catalytic performance for H2O2 reduction and oxidation, and obviously superior to conventional PB or gold nanoparticle modified electrode. The linear detection interval of PB-Au modified electrode was 0. 002-5.7m M, the sensitivity was 934? A 路 cm-2 路 m M-1, the lower limit of detection was low (72n M), and excellent operation and storage stability were obtained. Development-free electrochemical aptamer biosensor based on PB-Au composite film. Based on the high conductivity, co-catalytic properties and biological affinity of PB-Au nano-materials, as well as the gold binding sites with rich surface, we fixed and modified the aptamer on the surface of the complex and used to capture thrombin. By means of the influence of thrombin on the surface mass transfer and conductivity of the electrode, a sensitive detection of the signal is realized with the electrochemical activity and catalytic activity of PB. The linear detection interval is 0. 1 n M-100n M, the sensitivity is 5. 1? A 路 cm-2 路 n M-1, and the lower limit of detection is 13p M. The non-labeled aptamer sensor also exhibits excellent reproducibility and stability. In addition, given its ease of use, simple design and convenient operation, the proposed method can be used as an excellent design pattern for the preparation of other biosensors.
【學(xué)位授予單位】:湖南師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.1;TP212.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫敏莉,張皓,張柏根;磁性納米粒子與鏈霉親和素的連接及初步應(yīng)用[J];上海第二醫(yī)科大學(xué)學(xué)報(bào);2004年S1期
2 錢俊臻;萬巧鈴;黃紅稷;;磁性納米粒子的制備及其在分離檢測(cè)上的應(yīng)用[J];四川理工學(xué)院學(xué)報(bào)(自然科學(xué)版);2007年03期
3 趙麗娜;沈鶴柏;朱龍章;周海清;蘭天;;核殼型磁性納米粒子界面氨基的測(cè)定[J];現(xiàn)代生物醫(yī)學(xué)進(jìn)展;2008年03期
4 張吉林;洪廣言;倪嘉纘;;單分散磁性納米粒子靶向藥物載體[J];化學(xué)進(jìn)展;2009年05期
5 李玉慧;彭婷婷;張麗;歐陽麗;謝青季;蘇孝禮;馬銘;;羧甲基殼聚糖磁性納米粒子的合成及應(yīng)用[J];應(yīng)用化學(xué);2010年01期
6 徐李梅;章林溪;;受限于平行板中高分子刷/磁性納米粒子體系的構(gòu)象性質(zhì)研究[J];高分子學(xué)報(bào);2011年11期
7 姜孌;;超順磁性納米粒子的研究[J];合成材料老化與應(yīng)用;2011年03期
8 趙曉麗;周琦;張凱;鄧叢良;;磁性納米粒子在檢測(cè)中的應(yīng)用[J];檢驗(yàn)檢疫學(xué)刊;2013年05期
9 龔子珊;丁國生;唐安娜;;磁性納米粒子的制備及其在重金屬離子處理中的應(yīng)用[J];分析測(cè)試學(xué)報(bào);2014年02期
10 饒通德;;氧化鐵磁性納米粒子的表面修飾及應(yīng)用[J];化工文摘;2009年02期
相關(guān)會(huì)議論文 前10條
1 陸俊宇;黃秀香;韋聯(lián)強(qiáng);李啟虔;;離子液體功能化磁性納米粒子的制備及其性能研究[A];中國化學(xué)會(huì)第十七屆全國有機(jī)分析與生物分析學(xué)術(shù)研討會(huì)論文集[C];2013年
2 石峰;Wolfgang Knoll;;單個(gè)磁性納米粒子在水面上搬運(yùn)能力的研究[A];2009年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(下冊(cè))[C];2009年
3 武元鵬;左芳;鄭朝暉;丁小斌;彭宇行;;具有分子識(shí)別功能的磁性納米粒子的制備及應(yīng)用[A];2009年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(上冊(cè))[C];2009年
4 隋震鳴;陳曉;靖波;;溶致層狀相中摻雜磁性納米粒子[A];中國化學(xué)會(huì)第十屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2004年
5 汪友寶;沙舟順;楊仲南;朱龍章;沈鶴柏;;鍵合在磁性納米粒子表面引物的聚合酶鏈反應(yīng)[A];中國化學(xué)會(huì)第十屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2004年
6 王青;姜繼森;楊勇;;谷胱甘肽在磁性納米粒子上的吸附組裝[A];上海市顆粒學(xué)會(huì)2005年年會(huì)論文集[C];2005年
7 王青;姜繼森;甘志鋒;;氨基酸在磁性納米粒子上的吸附研究[A];上海市顆粒學(xué)會(huì)2005年年會(huì)論文集[C];2005年
8 李瑋;朱玉光;張黎明;;溫敏聚合物修飾的磁性納米粒子及其性能研究[A];2007年全國高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(下冊(cè))[C];2007年
9 夏海兵;汪大洋;;水分散磁性納米粒子空心簇的合成[A];中國化學(xué)會(huì)第26屆學(xué)術(shù)年會(huì)納米化學(xué)分會(huì)場論文集[C];2008年
10 張燕;閻虎生;;葉酸靶向的超順磁性納米粒子負(fù)載順鉑的制備和細(xì)胞研究[A];熱烈慶祝中國化學(xué)會(huì)成立80周年——中國化學(xué)會(huì)第16屆反應(yīng)性高分子學(xué)術(shù)研討會(huì)論文集[C];2012年
相關(guān)重要報(bào)紙文章 前7條
1 何屹 劉霞;美開發(fā)出可遠(yuǎn)程控制的磁性納米粒子[N];科技日?qǐng)?bào);2010年
2 王艷紅;磁性納米粒子“助陣”,癌癥診斷或?qū)⒏旄鼫?zhǔn)[N];新華每日電訊;2007年
3 新新;美用磁性納米粒子助診癌癥[N];中國醫(yī)藥報(bào);2007年
4 記者 張巍巍;磁性納米粒子和交變磁場可“聯(lián)手”治癌[N];科技日?qǐng)?bào);2012年
5 李山;脊髓液替代檢查手段問世[N];科技日?qǐng)?bào);2010年
6 記者 左永剛;聚合物包覆Fe3O4磁性納米粒子 可用于印染廠污水處理[N];中國高新技術(shù)產(chǎn)業(yè)導(dǎo)報(bào);2010年
7 臺(tái)訊;應(yīng)用“納米質(zhì)譜檢測(cè)技術(shù)”1小時(shí)可診斷病情[N];醫(yī)藥經(jīng)濟(jì)報(bào);2005年
相關(guān)博士學(xué)位論文 前10條
1 張璐;多功能磁性納米粒子在生物醫(yī)學(xué)光子學(xué)的應(yīng)用[D];吉林大學(xué);2011年
2 周帥;基于磁性納米粒子的多功能復(fù)合材料制備及其生物醫(yī)學(xué)研究[D];中國科學(xué)技術(shù)大學(xué);2012年
3 徐海飛;磁性納米粒子跨膜轉(zhuǎn)運(yùn)機(jī)制及生物學(xué)效應(yīng)和碳納米管對(duì)鉀通道影響的研究[D];中國協(xié)和醫(yī)科大學(xué);2010年
4 馬勇杰;磁性納米粒子的細(xì)胞內(nèi)吞及基因轉(zhuǎn)染研究[D];上海交通大學(xué);2012年
5 呂言云;基于超順磁性納米粒子的藥物載體和基因載體制備及其性能研究[D];吉林大學(xué);2013年
6 張強(qiáng);幾種無機(jī)負(fù)載催化劑的制備、表征及其在有機(jī)合成中的應(yīng)用[D];南京理工大學(xué);2013年
7 彭蕓花;磁性納米粒子在卵巢癌診治中的實(shí)驗(yàn)研究[D];蘭州大學(xué);2011年
8 石若冰;單分散磁性納米粒子/微球的制備、表征與生物醫(yī)學(xué)應(yīng)用[D];天津大學(xué);2012年
9 單志;多功能納米磁性粒子的合成及其在細(xì)胞富集和質(zhì)粒DNA純化中的應(yīng)用研究[D];四川農(nóng)業(yè)大學(xué);2010年
10 張紹強(qiáng);含Pr超磁致伸縮材料與磁性納米粒子的制備與性能[D];華南理工大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 忻茜;磁性納米粒子在生物學(xué)中的應(yīng)用[D];上海師范大學(xué);2006年
2 朱鴻林;基于磁性納米粒子類酶活性的農(nóng)產(chǎn)品安全檢測(cè)技術(shù)研究[D];上海交通大學(xué);2012年
3 歷娜;寡養(yǎng)單胞桿菌產(chǎn)磁性納米粒子的類酶活性及其應(yīng)用[D];東北林業(yè)大學(xué);2015年
4 蘇丹;超支化聚縮水甘油表面接支的磁性納米粒子的制備方法及性能研究[D];天津理工大學(xué);2015年
5 閆維;構(gòu)建捕獲EPC的生物功能化磁性納米粒子[D];西南交通大學(xué);2015年
6 楊露;改性磁性納米粒子用于有機(jī)農(nóng)藥萃取和富集的研究[D];北京化工大學(xué);2015年
7 劉亞婷;功能化磁性納米粒子合成及對(duì)蛋白質(zhì)分離方法學(xué)研究[D];北京化工大學(xué);2015年
8 李武勝;MWCNT-Fe_3O_4多維度納米雜化體的可控制備及其磁致取向行為研究[D];北京化工大學(xué);2015年
9 王哲;復(fù)合磁性納米粒子的制備與表征及載藥功能研究[D];哈爾濱工業(yè)大學(xué);2015年
10 馬佳佳;以磁性納米粒子為載體的鉑二亞胺類光動(dòng)力治療劑的研究[D];山西大學(xué);2014年
,本文編號(hào):2255467
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2255467.html