金屬納米結(jié)構(gòu)表面的可控制備及其在光學(xué)檢測中的應(yīng)用
[Abstract]:Surface plasmon resonance (SPR) properties of metal nanostructures can be simply understood as the collective oscillation of free electrons driven by the electric field of incident light relative to the metal ion skeleton. SPR properties are strongly dependent on metal nanoparticles. Based on the highly adjustable SPR properties and the accompanying local electromagnetic field enhancement phenomena, nano-scale metal structures have shown broad application prospects in many fields such as sensors, surface enhancement spectroscopy, energy conversion and so on. For example, in the field of optical detection, many reported SPR sensors are usually used to detect the formant of a wide range, except for the limitation of sensitivity. This leads to the lack of spectral resolution of the sensor, which is not conducive to the detection of the concentration pole. The homogeneity of SERS substrate also limits the role of many highly active substrates in testing, especially in quantitative testing. Although some of the problems caused by structural defects, including the above, can usually be solved by high-precision "top-down" technical means to optimize the structure, but For these reasons, a series of high-performance optical detectors based on metal nanostructures have been fabricated by rational design, high-efficiency and low-cost colloid etching and electrostatic self-assembly techniques. In the second chapter, a high performance SPR sensor based on a simple two-dimensional silver nanowell array is fabricated by using colloid etching technique. The structure of the sensor can be regarded as an ordered array of silver nanoholes bonded to a flat silver film. On the premise of following Bragg diffraction condition, the surface plasmon plaritons (SPPs) are formed by coupling with metal surface more efficiently. Meanwhile, the enhanced electromagnetic field caused by SPPs is completely located at the interface between nano-well and air, which can ensure that the change of environment is fully perceived and avoid the negative effect of substrate effect. The geometric parameters of the nanowells can be easily adjusted to optimize the performance of the sensors by using flexible colloid etching technology. We first optimize the pore size and depth of the nanowells by changing the dry etching time and the first deposited metal thickness, and then obtain a strong and sharp peak shape. The coupling effect between SPPs and Rayleigh singularity is very important for reducing the half-peak width. In addition, the refractive index sensitivity of the sensor can be improved by increasing the lattice constant of the array with a larger size of colloidal microsphere mask. At the same time, we have carried out a precise electromagnetic simulation to verify the reliability of the experimental results. The optimized samples have high refractive index sensitivity and very narrow half-peak width, making them high-sensitivity and high-resolution SPR sensors. The final immune test shows that the optimized silver nanowell array can be used as an excellent platform for biomolecular detection. On this basis, we construct different thickness dielectric layers between silver film and nanopore array, and then derive a silver nanopore array-dielectric layer-silver film sandwich composite structure. In the third chapter, we use electrostatic self-assembly of charged metal nanospheres. A highly active and homogeneous SERS substrate based on metal nanoparticle-nanopore hybrid structure array was fabricated by combining metal vertical deposition method. In order to achieve a high degree of homogeneity, we designed the gold nanospheres from the following three aspects. Firstly, the gold nanospheres used in this chapter were prepared by seed growth method, with regular morphology and excellent monodispersity, which made the size of the annular nano-gap more uniform. Secondly, the lower ionic strength made them adsorbed by electrostatic gravity. Finally, although the gold nanospheres are not aligned in a long-range order on the substrate, they are evenly distributed, so at any location, the circular spot of the laser illuminates the annular gap. Based on the above four conditions, the surface of the metal nanoparticles-nanoporous hybrid structure can have both excellent enhancement effect and homogeneity. In addition, the method used in this chapter is simple, low cost, and can achieve large-area preparation, which makes our method has great advantages in practical application. In Chapter 4, we developed a simple method to fabricate two-dimensional gold nanoparticle arrays with highly tunable particle spacing and optical properties, which can be easily integrated in a gradient form on a substrate. The charge density modulation takes advantage of the rheological properties of the polymer. After the electroneutral polystyrene (ps) film is treated by oxygen plasma, polar oxygen-containing groups are formed on the surface to enable electrostatic adsorption. Groups tend to move away from the film-air interface and into the PS film to reduce surface energy. Thus, the PS film treated by oxygen plasma can be annealed at different temperatures, and the surface with different charge densities can be obtained by layer-by-layer electrostatic self-assembly. Gold nanoparticle arrays with the same particle spacing and optical properties. Due to the important influence of particle spacing on local surface plasmon resonance (LSPR) coupling, the samples with different particle spacing also exhibit a high degree of spectral tunability. There are multiple resonance modes in the spectrum, which can support multiple SERs for wavelength selection. S-signal is advantageous for matching LSPR resonance bands, excitation wavelengths, and measured objects. In the annealing process, a large area of two-dimensional metal nanoparticle arrays with gradient particle spacing and spectrum can be easily fabricated by using a heat source with a surface temperature gradient. The gradient surface can be used as a "library" for specific applications. Our method is simple, universal, and can be prepared in large areas without any expensive and precise instruments, so it is suitable for ordinary laboratories and large-scale production.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:TB383.1
【相似文獻】
相關(guān)期刊論文 前10條
1 饒艷英;錢衛(wèi)平;;有序金屬納米殼材料[J];化學(xué)進展;2011年12期
2 滿石清;樊耘;湯俊琪;;帽狀金屬納米結(jié)構(gòu)的制備、性質(zhì)及應(yīng)用[J];暨南大學(xué)學(xué)報(自然科學(xué)與醫(yī)學(xué)版);2012年05期
3 ;世界首次利用金屬納米結(jié)構(gòu)的光納米成像技術(shù)[J];吉林農(nóng)業(yè)農(nóng)村經(jīng)濟信息;2006年02期
4 孟慶平,戎詠華,徐祖耀;金屬納米晶的相穩(wěn)定性[J];中國科學(xué)E輯:技術(shù)科學(xué);2002年04期
5 黃川;宋曉艷;魏君;韓清超;;金屬納米晶熱穩(wěn)定性的計算機仿真與實驗研究[J];中國體視學(xué)與圖像分析;2008年03期
6 李志遠;李家方;;金屬納米結(jié)構(gòu)表面等離子體共振的調(diào)控和利用[J];科學(xué)通報;2011年32期
7 金翼水;劉輔庭;;高功能性金屬納米纖維的制造及其性能評估[J];合成纖維;2011年10期
8 楊國楨;;評《金屬納米結(jié)構(gòu)表面等離子體共振的調(diào)控和利用》[J];科學(xué)通報;2012年Z1期
9 黃敏;楊修春;趙建富;顧幸勇;梁華銀;錢士雄;;銀銅雙金屬納米晶玻璃復(fù)合材料光學(xué)三階非線性的研究[J];中國陶瓷工業(yè);2012年05期
10 張治平;張亞文;;可控形貌的雙金屬納米晶催化劑的研究進展[J];大學(xué)化學(xué);2013年05期
相關(guān)會議論文 前10條
1 王仲玨;;金屬納米變質(zhì)技術(shù)新進展[A];2010年中國鑄造活動周論文集[C];2010年
2 李志遠;;金屬納米微結(jié)構(gòu)和顆粒的表面等離子體共振[A];中國光學(xué)學(xué)會2006年學(xué)術(shù)大會論文摘要集[C];2006年
3 黃川;宋曉艷;魏君;韓清超;;金屬納米晶熱穩(wěn)定性的計算機仿真與實驗研究[A];第十二屆中國體視學(xué)與圖像分析學(xué)術(shù)會議論文集[C];2008年
4 李亞棟;;金屬納米催化[A];第六屆全國物理無機化學(xué)會議論文摘要集[C];2012年
5 李亞棟;;金屬納米催化[A];第十二屆固態(tài)化學(xué)與無機合成學(xué)術(shù)會議論文摘要集[C];2012年
6 宋曉艷;張久興;李乃苗;高金萍;楊克勇;劉雪梅;;金屬納米晶和納米粒子材料熱力學(xué)特性的模擬計算與實驗研究[A];2005年全國計算材料、模擬與圖像分析學(xué)術(shù)會議論文集[C];2005年
7 王樹林;李生娟;杜妍辰;徐波;李來強;朱巖;;金屬納米結(jié)構(gòu)的干法室溫大規(guī)模制備[A];第八屆全國顆粒制備與處理學(xué)術(shù)和應(yīng)用研討會論文集[C];2007年
8 吳炳輝;陳光需;代燕;鄭南峰;;貴金屬納米晶的表界面調(diào)控[A];第十二屆固態(tài)化學(xué)與無機合成學(xué)術(shù)會議論文摘要集[C];2012年
9 郭霞;張巧;葉偉;謝芳;趙清;楊劍;;金基納米棒的選擇性腐蝕制備新穎多金屬納米結(jié)構(gòu)[A];中國化學(xué)會第29屆學(xué)術(shù)年會摘要集——第33分會:納米材料合成與組裝[C];2014年
10 童明良;劉俊良;冷際東;郭鵬虎;;系列4f/3d-4f金屬納米分子磁體的組裝與磁-構(gòu)關(guān)系研究[A];中國化學(xué)會第28屆學(xué)術(shù)年會第8分會場摘要集[C];2012年
相關(guān)重要報紙文章 前3條
1 本報記者 危麗瓊;雙金屬納米簇催化劑“1+1>2”[N];中國化工報;2013年
2 張巍巍;美開發(fā)出高度控制金屬納米結(jié)構(gòu)的方法[N];科技日報;2012年
3 記者 毛黎;碳納米管與金屬納米導(dǎo)線成功連接[N];科技日報;2007年
相關(guān)博士學(xué)位論文 前10條
1 孫明斐;異常一維金屬納米結(jié)構(gòu)彈性及塑性的分子動力學(xué)模似表征[D];復(fù)旦大學(xué);2014年
2 李楠庭;石墨烯負載金屬納米結(jié)構(gòu)的制備及性能表征[D];南京大學(xué);2015年
3 宋瑋;多肽/金屬納米簇的制備及其用于生物分析檢測研究[D];南昌大學(xué);2015年
4 伍鐵生;基于金屬納米結(jié)構(gòu)的光傳輸特性及其應(yīng)用研究[D];北京郵電大學(xué);2015年
5 王超;Ir基貴金屬納米晶制備及其催化性質(zhì)研究[D];吉林大學(xué);2016年
6 武振楠;基于金屬納米點的超薄二維組裝結(jié)構(gòu)構(gòu)筑[D];吉林大學(xué);2016年
7 吳菲菲;金屬納米結(jié)構(gòu)的構(gòu)筑及其在傳感中的應(yīng)用[D];吉林大學(xué);2016年
8 程毅;液相基底表面金屬納米結(jié)構(gòu)形成機理的計算機模擬[D];浙江大學(xué);2016年
9 張亞芳;金屬納米結(jié)構(gòu)對染料分子和稀土離子光學(xué)性質(zhì)的調(diào)控[D];武漢大學(xué);2016年
10 馬宗偉;金屬納米棒陣列的三階光學(xué)非線性和光致發(fā)光特性研究[D];華中科技大學(xué);2016年
相關(guān)碩士學(xué)位論文 前10條
1 祝國民;原位液體透射電鏡芯片的研發(fā)及基于此技術(shù)的貴金屬納米晶生長和刻蝕研究[D];浙江大學(xué);2015年
2 倪媛;貴金屬納米結(jié)構(gòu)的可控合成及其光熱效應(yīng)研究[D];南京航空航天大學(xué);2015年
3 楊榮;貴金屬納米晶合成及其性能研究[D];浙江理工大學(xué);2015年
4 吳佳;基于金屬納米簇的光學(xué)分析方法研究[D];陜西師范大學(xué);2015年
5 趙婷;貴金屬納米結(jié)構(gòu)的消光特性研究[D];陜西師范大學(xué);2015年
6 蔡正杰;表面等離激元誘導(dǎo)的金屬納米寬單頻帶和窄多頻帶光透明特征研究[D];江西師范大學(xué);2015年
7 韓淑華;中空、多孔貴金屬納米結(jié)構(gòu)的構(gòu)筑及其機理、性能研究[D];溫州大學(xué);2015年
8 沈琪;金屬納米顆粒陣列的局域表面等離激元共振研究[D];南京大學(xué);2014年
9 王婧;金屬納米結(jié)構(gòu)在超寬帶電磁波中的局域增強特性及應(yīng)用研究[D];電子科技大學(xué);2014年
10 劉花;熒光性的金屬納米簇合成及傳感性能研究[D];浙江師范大學(xué);2015年
,本文編號:2197606
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2197606.html