尖晶石型鋅鐵氧體的生長調(diào)制及其機(jī)理的原位研究
本文選題:鋅鐵氧體 + 納米簇; 參考:《揚(yáng)州大學(xué)》2017年碩士論文
【摘要】:尖晶石型鐵氧體因其優(yōu)越的性能而被廣泛應(yīng)用在催化、磁存儲(chǔ)、生物醫(yī)藥等領(lǐng)域。如何在保持材料超順磁性(小顆粒)的同時(shí),有效提高其磁化強(qiáng)度是影響該類型材料研發(fā)的一個(gè)關(guān)鍵科學(xué)問題。本論文以鋅鐵氧體(ZnFe2O4)為目標(biāo)產(chǎn)物,通過改變產(chǎn)物中的Fe、Zn離子摩爾比、添加多齒配體等,制備了不同形貌(簇狀、納米片、單分散納米顆粒)的高飽和磁化強(qiáng)度的鋅鐵氧體。應(yīng)用原位微量熱技術(shù)研究了其相應(yīng)的形成機(jī)理。為研制超順磁、高飽和磁化強(qiáng)度的尖晶石型納米材料提供理論指導(dǎo)和科學(xué)依據(jù)。同時(shí),通過添加六齒配體EDTA,成功制備了 ZnFe2O4/ZnO共存的磁性納米材料。本文的主要研究內(nèi)容和結(jié)論如下:1、選擇組成為Zn0.2Fe2.8O4的超順磁、高飽和磁化強(qiáng)度的納米簇作為目標(biāo)產(chǎn)物,通過原位量熱并技術(shù)結(jié)合XRD、ICP-AES、TEM、XPS、FTIR等表征手段,深入探索納米簇的形成機(jī)理。實(shí)驗(yàn)結(jié)果表明,體系中的Fe3+首先和HOCH2CH2OH反應(yīng)生成Fe(OCH2CH2OH)3,然后部分 Fe(OCH2CH2OH)3 中的 Fe3+ 被 Zn2+ 替代,形成Zn(OCH2CH2OH)2。Fe(OCH2CH2OH)3和Zn(OCH2CH2OH)2 聚合作為凝膠因子,形成凝膠。隨著反應(yīng)溫度升高,氫鍵被破壞,凝膠會(huì)轉(zhuǎn)化成溶液。該過程發(fā)生了取代反應(yīng),生成了(Fe,Zn)OOH,其中-OCH2CH2O-作為橋聯(lián)基團(tuán)與Fe3+和Zn2+成鍵,誘導(dǎo)了簇狀結(jié)構(gòu)的形成。然后簇狀(Fe,Zn)OOH脫水生成了簇狀α-Fe203,最后轉(zhuǎn)變?yōu)榇貭頩n0.2Fe2.8O4。并通過加入EDA抑制醇鹽的生成和聚合,進(jìn)一步證明是聚合物的形成促使產(chǎn)物形成簇狀結(jié)構(gòu),-OCH2CH2O-的橋聯(lián)作用是形成簇狀結(jié)構(gòu)的關(guān)鍵。對磁性納米簇形成機(jī)理的研究,將為研制該類型材料提供思路和理論基礎(chǔ),為類似的科學(xué)問題提供實(shí)驗(yàn)依據(jù)。2、通過簡單的一步溶劑熱法合成了具有高飽和磁化強(qiáng)度和大表面積的單分散Zn摻雜Fe3O4磁性納米片。使用原位微量熱法,結(jié)合XRD、ICP-AES、XPS、FTIR、TEM等表征手段詳細(xì)研究了 EDA調(diào)控下Zn摻雜Fe304磁性納米片的形成機(jī)理。結(jié)果表明EDA改變了產(chǎn)物的生成機(jī)理。體系中Fe(EDA)3]3+和[Zn(EDA)3]2+配合物的形成,降低了游離Fe3+和Zn2+濃度,抑制了部分反應(yīng)的發(fā)生,并導(dǎo)致部分反應(yīng)在更高的溫度發(fā)生。同時(shí),Zn摻雜Fe3O4的(111)面變得穩(wěn)定,這誘導(dǎo)了納米片的形成。具有高飽和磁化強(qiáng)度和大表面積的Zn摻雜的Fe304納米片在不同領(lǐng)域,如吸附、生物分子分離和藥物靶向傳遞中,具有潛在的應(yīng)用價(jià)值。3、通過一步溶劑熱法合成了表面積較大的ZnFe204/Zn0磁性復(fù)合材料。利用原位微量熱法研究了 ZnFe2O4/ZnO復(fù)合材料的形成機(jī)理。Fe3+-EDTA和Zn2+-EDTA配離子的形成,降低了游離Fe3+和Zn2+濃度,抑制了醇鹽的形成。同時(shí),適量的EDTA作為配體,可以吸附在晶體的表面,從而使得臨近的晶核在氨基和羧基的作用下,自組裝成球,與第二章中-OCH2CH2O-類似。制備的ZnFe2O4/ZnO磁性復(fù)合材料因?yàn)楸缺砻娣e較大且分散性好,在吸附、光催化等方面有潛在的應(yīng)用價(jià)值。
[Abstract]:Spinel ferrite is widely used in catalysis, magnetic storage, biomedicine and other fields because of its superior performance. How to improve the magnetization while keeping the material superparamagnetism (small particle) is a key scientific problem that affects the research and development of this kind of material. In this paper, zinc ferrite (ZnFe _ 2O _ 4) was used as the target product. High saturation magnetization zinc ferrites with different morphologies (clusters, nanoparticles and monodisperse nanoparticles) were prepared by changing the molar ratio of Fe ~ (2 +) and polydentate ligands. The formation mechanism was studied by in situ microcalorimetry. It provides theoretical guidance and scientific basis for the development of spinel nanomaterials with super paramagnetic and high saturation magnetization. At the same time, the magnetic nanomaterials of ZnFe2O4 / ZnO were successfully prepared by adding hexagonal ligand EDTA. The main contents and conclusions of this paper are as follows: 1. The ultraparamagnetic and high saturation magnetization nanoclusters composed of Zn0.2Fe2.8O4 are selected as the target products. The formation mechanism of nanoclusters is further explored by means of in-situ calorimetry and in situ calorimetry combined with XRDICP-AESTEMP-TEMPS FTIR. The experimental results show that Fe _ 3 reacts with Hoch _ 2CH _ 2OH to form Fe (OCH _ 2CH _ 2OH) _ 3, and then Fe _ 3 in Fe (OCH _ 2CH _ 2O _ H) _ 3 is replaced by Zn _ 2 to form a gel by polymerization of Zn (OCH2CH2OH) _ 2.Fe (OCH2CH2OH) _ 3 and Zn (OCH2CH2OH) _ 2 as gel factors. As the reaction temperature increases, the hydrogen bond is broken and the gel is converted into a solution. The substitution reaction took place in this process, resulting in the formation of (Fezn) OOH, in which -OCH _ 2CH _ 2O- was used as a bridging group to bond with Fe _ 3 and Zn _ 2, which induced the formation of cluster structure. Then a cluster 偽 -Fe 203 was formed by dehydration of cluster (Feo Zn) OOH, and finally transformed into cluster Zn 0.2Fe 2.8O 4. By adding EDA to inhibit the formation and polymerization of alcohol salt, it is further proved that the bridging action of the product to form cluster structure is the key to the formation of cluster structure. The study of the formation mechanism of magnetic nanoclusters will provide a theoretical basis for the development of this type of materials. In order to provide experimental basis for similar scientific problems, monodisperse Zn doped Fe _ 3O _ 4 magnetic nanocrystals with high saturation magnetization and large surface area were synthesized by a simple solvothermal method. In situ microcalorimetry was used to study the formation mechanism of Zn doped Fe 304 magnetic nanocrystals under the control of EDA by means of in situ microcalorimetry combined with XRDX ICP-AESX FTIR TEM. The results showed that EDA changed the formation mechanism of the product. The formation of Fe (EDA) _ 3] _ 3 and [Zn (EDA) _ 3] _ 2 complexes decreases the concentration of free Fe _ 3 and Zn _ 2, inhibits the occurrence of partial reactions and results in partial reactions at higher temperatures. At the same time, the (111) surface of Zn doped Fe _ 3O _ 4 becomes stable, which induces the formation of nanocrystals. Zn doped Fe 304 nanocrystals with high saturation magnetization and large surface area are found in various fields, such as adsorption, biomolecular separation and drug targeting transport. ZnFe204 / Zn0 magnetic composites with large surface area were synthesized by one step solvothermal method. In situ microcalorimetry was used to study the formation mechanism of ZnFe _ 2O _ 4 / ZnO composites. The formation of Fe _ 3-EDTA and Zn _ 2-EDTA complex ions decreased the concentration of free Fe _ 3 and Zn _ 2 and inhibited the formation of alcohol salts. At the same time, the appropriate amount of EDTA as ligand can be adsorbed on the surface of the crystal, so that the adjacent nuclei can self-assemble into spheres under the action of amino and carboxyl groups, which is similar to that of -OCH2CH2O- in Chapter 2. The ZnFe _ 2O _ 4 / ZnO magnetic composites have potential applications in adsorption and photocatalysis because of their large specific surface area and good dispersion.
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB383.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 陳璐瑤;;磁性鐵氧體納米材料制備研究進(jìn)展[J];世界有色金屬;2016年15期
2 WANG LuDe;LIU ShaoGang;LIU XiaoLin;LIU ZuoJiao;MA Zhao;HUANG ZaiYin;;Thermodynamic functions and growth constants of web-like ZnO nanostructures[J];Chinese Science Bulletin;2013年27期
3 馬玉潔;范高超;陳潔;黃在銀;;MnMoO_4·H_2O納米棒生長過程的原位熱動(dòng)力學(xué)研究[J];高等學(xué);瘜W(xué)學(xué)報(bào);2012年08期
4 王海;;Controlled Preparation of Monodisperse CoFe_2O_4 Nanoparticles by a Facile Method[J];Journal of Wuhan University of Technology(Materials Science Edition);2011年02期
5 ;Kinetic investigation of in situ growth of CdMoO_4 nano-octahedra[J];Chinese Science Bulletin;2011年03期
6 胡艷軍;蔣風(fēng)雷;歐陽宇;劉義;;微量熱法在藥物活性評價(jià)中的應(yīng)用[J];中國科學(xué):化學(xué);2010年09期
相關(guān)博士學(xué)位論文 前1條
1 李霞;微量熱法研究生物大分子及草酸鈣模擬生物礦化[D];武漢大學(xué);2004年
相關(guān)碩士學(xué)位論文 前5條
1 薛君;功能化磁性納米材料的制備及其在廢水污染物治理中的應(yīng)用研究[D];沈陽理工大學(xué);2014年
2 王路得;氧化鋅納米材料的可控合成、原位生長機(jī)理、熱力學(xué)及動(dòng)力學(xué)性質(zhì)研究[D];廣西民族大學(xué);2013年
3 曹世賀;實(shí)驗(yàn)條件對尖晶石結(jié)構(gòu)納米顆粒磁性能的影響[D];寧波大學(xué);2011年
4 徐洪圖;溶劑熱制備小尺寸氧化鋅納米結(jié)構(gòu)及其物性研究[D];東北師范大學(xué);2008年
5 金澤平;多鐵性材料BiFeO_3的制備與性能表征[D];蘭州大學(xué);2008年
,本文編號(hào):2111365
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2111365.html