填充型聚丙烯基導(dǎo)熱復(fù)合材料的制備及性能研究
本文選題:聚丙烯 + 逾滲理論 ; 參考:《福建師范大學(xué)》2015年碩士論文
【摘要】:導(dǎo)熱聚丙烯復(fù)合材料是新型功能性高分子復(fù)合材料,在導(dǎo)熱散熱領(lǐng)域有著廣闊的應(yīng)用前景。本論文以提高聚丙烯(PP)的導(dǎo)熱性能,即提高復(fù)合材料的導(dǎo)熱系數(shù)為目的,借鑒導(dǎo)電高分子復(fù)合材料的逾滲理論及雙逾滲理論,分析逾滲理論及雙逾滲理論在導(dǎo)熱高分子復(fù)合材料導(dǎo)熱行為的應(yīng)用。選用兩種不同類型的PP復(fù)合體系,其一是與PP相容性較好的苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS),另一個(gè)是與PP相容性較差的聚酰胺6(PA6)分別構(gòu)成PP/SEBS和PP/PA6復(fù)合體系,研究導(dǎo)電炭黑及導(dǎo)熱填料在復(fù)合體系中的選擇性分布對(duì)導(dǎo)電性能及導(dǎo)熱性能的影響。本論文第一章統(tǒng)計(jì)了本論文使用的實(shí)驗(yàn)原料、實(shí)驗(yàn)儀器及測(cè)試標(biāo)準(zhǔn),詳細(xì)描敘了實(shí)驗(yàn)方案和試樣的制備和測(cè)試的方法。并選定正交表L9(34),設(shè)計(jì)PP/SEBS復(fù)合體系的正交實(shí)驗(yàn)。本論文第二章由PP/SEBS復(fù)合體系的L9(34)正交實(shí)驗(yàn),探尋PP/SEBS配比、充油量、加料方式和炭黑含量對(duì)導(dǎo)電性能的影響,得出最佳方案。以最佳方案為基礎(chǔ),分析填充導(dǎo)電炭黑(CB)分析PP/SEBS/CB復(fù)合材料的導(dǎo)電行為和導(dǎo)熱行為,并進(jìn)-步驗(yàn)證正交實(shí)驗(yàn)的最優(yōu)方案;再在PP/SEBS復(fù)合體系中填充導(dǎo)熱絕緣填料氧化鋅(ZnO)和氧化鋁(A1203)研究分析復(fù)合材料的導(dǎo)熱行為及力學(xué)性能,在此基礎(chǔ)上復(fù)配導(dǎo)熱填料,并研究復(fù)合材料的性能。結(jié)果表明:PP/SEBS/CB復(fù)合材料的導(dǎo)電行為是典型的導(dǎo)電逾滲現(xiàn)象,復(fù)合材料的體積電阻率在CB用量達(dá)到臨界值后大幅下降,SEBS則有效減少?gòu)?fù)合材料逾滲突變時(shí)CB用量的逾滲閾值;導(dǎo)熱絕緣PP復(fù)合材料導(dǎo)熱效果:ZnO填充優(yōu)于Al2O3; PP/SEBS體系優(yōu)于純PP基體;在PP/SEBS復(fù)合體系中,研究不同填料復(fù)配效果發(fā)現(xiàn)單一ZnO填充的導(dǎo)熱系數(shù)和力學(xué)性能最優(yōu)。本論文第三章以PP/PA6為基體,先填充導(dǎo)電CB分析PP/PA6/CB復(fù)合材料的導(dǎo)電行為和導(dǎo)熱行為,及大分子相容劑對(duì)復(fù)合材料導(dǎo)熱、導(dǎo)電性能的影響;再在PP/PA6復(fù)合體系中填充ZnO研究分析復(fù)合材料的導(dǎo)熱行為及大分子相容劑對(duì)復(fù)合材料導(dǎo)熱、導(dǎo)電性能的影響,在此基礎(chǔ)上復(fù)配導(dǎo)熱填料,并研究復(fù)合材料的性能。結(jié)果表明PP/PA6/CB復(fù)合材料的導(dǎo)電行為是典型的導(dǎo)電逾滲現(xiàn)象,PA6有效減少?gòu)?fù)合材料逾滲突變時(shí)CB用量的逾滲閾值,但是效果不如PP/SEBS復(fù)合體系;大分子相容劑馬來酸酐接枝聚丙烯(PP-g-MAH);加入不利于復(fù)合材料的導(dǎo)電性能,但是卻穩(wěn)定了通過CB通路的導(dǎo)電電流;PP/PA6/ZnO復(fù)合材料導(dǎo)熱系數(shù)優(yōu)于PP/SEBS/ZnO復(fù)合材料;研究不同填料復(fù)配效果發(fā)現(xiàn)單一ZnO填充的導(dǎo)熱系數(shù)最優(yōu)。馬來酸酐接枝苯乙烯-乙烯-丁二烯-苯乙烯共聚物(SEBS-g-MAH)替代PP-g-MAH能改善復(fù)合材料的沖擊性能,但導(dǎo)熱性能則會(huì)降低。使用10 wt%硅鋁復(fù)合納米管(PNT)替代等量的ZnO則會(huì)進(jìn)一步提升復(fù)合材料的沖擊強(qiáng)度和維卡軟化溫度。
[Abstract]:Thermal conductive polypropylene composite is a new type of functional polymer composite, which has a broad application prospect in the field of heat conduction and heat dissipation. In order to improve the thermal conductivity of polypropylene (PP), that is, to improve the thermal conductivity of composites, the percolation theory and double percolation theory of conductive polymer composites are used for reference in this paper. The application of percolation theory and double percolation theory to thermal conductivity of polymer composites is analyzed. Two kinds of PP composite systems were selected. One was styrene butadiene-styrene block copolymer (SEBS) with good compatibility with PP, the other was polyamide 6 (PA6), which had poor compatibility with PP. The effects of the selective distribution of conductive carbon black and thermal conductive filler in the composite system on the conductivity and thermal conductivity were studied. In the first chapter, the experimental materials, experimental instruments and test standards used in this paper are analyzed, and the experimental scheme and the preparation and test methods of the samples are described in detail. The orthogonal experiment of PP- / SEBS composite system was designed with orthogonal table L _ 9 (34). In the second chapter, by L9 (34) orthogonal experiment of PP- / SEBS composite system, the effects of PP / SEBS ratio, oil filling, feeding method and carbon black content on the conductivity were investigated. Based on the best scheme, the conductive behavior and thermal conductivity of PPP-SEBS / CB composites were analyzed by means of filled conductive carbon black (CB). Then the thermal conductivity behavior and mechanical properties of the composites were analyzed by filling the thermal insulating filler zinc oxide (ZnO) and alumina (A1203) in the PP- SEBS composite system, and the properties of the composites were also studied. The results show that the conductivity behavior of the composite is a typical percolation phenomenon, and the volume resistivity of the composite decreases significantly when the CB content reaches the critical value. The thermal conductivity of PP composites with thermal insulation is better than that of Al _ 2O _ 3 and that of PP / SEBS is better than that of pure PP matrix. In the PP / SEBS composite system, it is found that the thermal conductivity and mechanical properties of single ZnO filled PP / SEBS composites are the best. In the third chapter, the conductive behavior and thermal conductivity of PP / PA6 / CB composites were analyzed by filled CB, and the effects of macromolecular compatibilizers on the thermal conductivity and conductivity of composites were analyzed. The thermal conductivity behavior of the composites and the effect of macromolecular compatibilizers on the thermal conductivity and electrical conductivity of the composites were studied by filling ZnO in PP- / PA6 composite system. On the basis of this, the thermal conductivity fillers were prepared and the properties of the composites were studied. The results show that the conductive behavior of PP- / PA6 / CB composite is a typical phenomenon of percolation. PA6 can effectively reduce the percolation threshold of CB content when the percolation catastrophe occurs, but the effect is not as good as that of PP- / SEBS composite system. Macromolecular compatibilizer, maleic anhydride grafted polypropylene (PP-g-MAH), is not conducive to the conductive properties of composites, but the thermal conductivity of PP- / PA6 / ZnO composites via CB channel is better than that of PP- / SEBS- / ZnO composites. It is found that the thermal conductivity of single ZnO filler is optimal by studying the mixing effect of different fillers. Grafting of maleic anhydride with styrene-butadiene-styrene copolymer (SEBS-g-MAH) instead of PP-g-MAH can improve the impact property of the composites, but the thermal conductivity will decrease. The impact strength and Vicat softening temperature of the composites can be further improved by replacing the same amount of ZnO with 10 wt% Si-Al composite nanotubes (PNT).
【學(xué)位授予單位】:福建師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB33
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 張甲敏;陳軍龍;趙文慶;廉全貴;;PP-g-(MAH-co-St)增容PA6/PP研究[J];工程塑料應(yīng)用;2013年12期
2 李俊明;虞鑫海;羅道明;;導(dǎo)熱填料在絕緣高分子材料中的應(yīng)用[J];絕緣材料;2013年02期
3 梁基照;楊銓銓;;高分子基導(dǎo)電復(fù)合材料非線性導(dǎo)電行為及其機(jī)理(Ⅱ)量子力學(xué)隧道效應(yīng)理論[J];上海塑料;2010年01期
4 郭培榮;張煒巍;;碳化硅晶須/碳化硅顆粒/聚丙烯復(fù)合材料的結(jié)構(gòu)優(yōu)化設(shè)計(jì)和模型擬合[J];塑料工業(yè);2012年10期
5 李光吉;童奇勇;馮暉;;聚丙烯/四針狀氧化鋅晶須/氧化鎂導(dǎo)熱絕緣復(fù)合材料的制備與性能研究[J];中國(guó)塑料;2010年06期
6 楊旭宇;王治國(guó);;相容劑對(duì)PA6/PP合金性能的影響[J];現(xiàn)代塑料加工應(yīng)用;2013年03期
相關(guān)會(huì)議論文 前1條
1 李侃社;王琪;劉洪理;;磨盤碾磨制備聚丙烯/石墨導(dǎo)熱復(fù)合材料的研究[A];第四屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2001年
相關(guān)碩士學(xué)位論文 前1條
1 黃小鵬;納米復(fù)合材料中熱輸運(yùn)的分子動(dòng)力學(xué)模擬[D];中國(guó)科學(xué)院研究生院(工程熱物理研究所);2008年
,本文編號(hào):2083631
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2083631.html