磁性薄膜的高頻性能表征技術(shù)研究
本文選題:動(dòng)態(tài)磁化 + 鐵磁共振。 參考:《電子科技大學(xué)》2015年碩士論文
【摘要】:隨著磁存儲(chǔ)行業(yè)近年來的迅速發(fā)展,市場(chǎng)對(duì)磁存儲(chǔ)材料的記錄速度要求越來越高,這就將MRAM等超快磁記錄器件的操作頻率推到了GHz頻段。在這個(gè)高頻段下,磁弛豫成為器件性能極為重要的一方面,人們對(duì)磁阻尼機(jī)理的深入研究產(chǎn)生了興趣,為了對(duì)磁化進(jìn)動(dòng)的轉(zhuǎn)換進(jìn)行最優(yōu)化,磁性材料阻尼因子的具體系統(tǒng)控制變得十分重要。因此研究材料高頻動(dòng)態(tài)磁化過程的表征技術(shù)有著重要意義。本文在對(duì)目前高頻動(dòng)態(tài)磁性能表征技術(shù)的發(fā)展?fàn)顩r的調(diào)研基礎(chǔ)上,確立了使用基于共面波導(dǎo)與矢量網(wǎng)絡(luò)分析儀的新型鐵磁共振測(cè)試作為表征手段,以建立寬頻帶鐵磁共振自動(dòng)化測(cè)試系統(tǒng)為研究目的。研究的主要內(nèi)容包括:(1)基于新型鐵磁共振測(cè)試原理,完成了寬頻帶鐵磁共振測(cè)試系統(tǒng)硬件組建,其中核心內(nèi)容是采用電磁仿真軟件HFSS設(shè)計(jì)制作了適用于本系統(tǒng)的新型共面波導(dǎo)測(cè)試夾具。經(jīng)測(cè)試,夾具微波性能滿足系統(tǒng)需求。(2)基于虛擬儀器技術(shù),使用LabVIEW開發(fā)了自動(dòng)測(cè)試軟件,通過磁場(chǎng)自動(dòng)控制,矢量網(wǎng)絡(luò)分析儀的自動(dòng)設(shè)置與讀取以及測(cè)試數(shù)據(jù)的自動(dòng)化顯示與存儲(chǔ)三大模塊,實(shí)現(xiàn)了全自動(dòng)鐵磁共振測(cè)試。(3)研究分析了寬帶鐵磁共振測(cè)試的數(shù)據(jù)處理技術(shù),建立了測(cè)試S21曲線與鐵磁共振曲線的關(guān)系。并使用LabVIEW編制了數(shù)據(jù)自動(dòng)處理系統(tǒng),其中集成了目前廣泛使用的相移洛倫茲擬合與Fano擬合,實(shí)現(xiàn)了一鍵調(diào)入數(shù)據(jù)得到鐵磁共振線寬與共振磁場(chǎng)。(4)在實(shí)際測(cè)試中,對(duì)比了兩種擬合方法的擬合結(jié)果,分析了鐵磁共振曲線形狀對(duì)擬合結(jié)果的影響,并指出Fano擬合具有更廣的適用范圍。在實(shí)際測(cè)試中,本文搭建的寬帶鐵磁共振測(cè)試系統(tǒng)精度較高,重復(fù)性好,而且克服了傳統(tǒng)鐵磁共振測(cè)試頻率限制的缺點(diǎn),可在任意頻率下測(cè)試得到鐵磁共振線寬,從而獲取阻尼因子,為材料高頻動(dòng)態(tài)磁化提供了全面可靠的表征,是研究磁化動(dòng)力學(xué)的有力工具。
[Abstract]:With the rapid development of magnetic storage industry in recent years, the market demands higher and higher recording speed of magnetic storage materials, which pushes the operating frequency of MRAM and other ultra-fast magnetic recording devices to the GHz band. In this high frequency band, magnetic relaxation has become one of the most important aspects of the device performance. In order to optimize the conversion of magnetic precession, people are interested in the further study of the mechanism of magnetic damping. It is very important to control the damping factor of magnetic material. Therefore, it is of great significance to study the characterization of high frequency dynamic magnetization process of materials. In this paper, based on the investigation of the development of high frequency dynamic magnetic properties characterization technology, a new ferromagnetic resonance test based on coplanar waveguide and vector network analyzer is established as a means of characterization. The purpose of this study is to establish a broadband automatic ferromagnetic resonance test system. The main contents are as follows: (1) based on the new ferromagnetic resonance testing principle, the hardware structure of the wideband ferromagnetic resonance testing system is completed. The core content is the design and manufacture of a new coplanar waveguide testing fixture using electromagnetic simulation software HFSS. The test results show that the microwave performance of the fixture meets the requirements of the system. (2) based on the virtual instrument technology, the automatic test software is developed with LabVIEW, and the magnetic field is automatically controlled. The automatic setting and reading of vector network analyzer and the automatic display and storage of test data are three modules to realize automatic ferromagnetic resonance testing. (3) the data processing technology of wideband ferromagnetic resonance testing is studied and analyzed. The relationship between the measured S 21 curve and the ferromagnetic resonance curve was established. An automatic data processing system is developed with LabVIEW, in which the widely used phase-shifted Lorentz fitting and Fano fitting are integrated, and the ferromagnetic resonance linewidth and resonance magnetic field are obtained by inserting the data with one key. (4) in the actual test, The effect of the shape of ferromagnetic resonance curve on the fitting results is analyzed, and the Fano fitting is pointed out to be more suitable. In the actual test, the wideband ferromagnetic resonance testing system built in this paper has high precision and good repeatability, and overcomes the shortcoming of the traditional ferromagnetic resonance testing frequency limit, and can be measured at any frequency to obtain the ferromagnetic resonance linewidth. Therefore, the damping factor is obtained, which provides a comprehensive and reliable characterization for the high frequency dynamic magnetization of materials and is a powerful tool for the study of magnetization dynamics.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前8條
1 畢耜云,馬小丁,宋瑞田,梅良模,趙見高,郭貽誠(chéng);金屬Fe/Cu超晶格的結(jié)構(gòu)和鐵磁共振[J];金屬學(xué)報(bào);1990年05期
2 周世昌,陳雷,張秀成,劉玳珩;交換耦合NiFe/TbCo雙層膜的鐵磁共振研究(英文)[J];材料科學(xué)進(jìn)展;1993年04期
3 侯碧輝,眭云霞,易俗,許勤論,韓世瑩;LaBaMnO薄膜的鐵磁共振[J];波譜學(xué)雜志;1997年01期
4 王輝,金慶原,沈元華,李富銘,祝向榮,沈鴻烈,睦云霞,鹿牧,翟宏如;不同制備條件下的Co/Cu多層膜的巨磁電阻及鐵磁共振研究[J];功能材料與器件學(xué)報(bào);1999年01期
5 黃琳,師文生;Li-Zn-Zr-Ti-Cu系鐵氧體鐵磁共振的研究[J];功能材料與器件學(xué)報(bào);1997年03期
6 李國(guó)棟,井寧,李德新,郭淑嬌,王會(huì)宗,蘇彥欣,張雅琴;Ni-Zn-Cu系鐵氧體的磁性和鐵磁共振研究[J];科學(xué)通報(bào);1988年20期
7 劉中夏;師文生;;Li—Zn—Cu系鐵氧體磁性和鐵磁共振的研究[J];陜西師大學(xué)報(bào)(自然科學(xué)版);1993年03期
8 ;[J];;年期
相關(guān)會(huì)議論文 前2條
1 傅彥培;鄭智文;洪東興;林正雄;姚永德;;奈米級(jí)鉍--釔鐵柘榴石粉末合成與燒結(jié)塊材之鐵磁共振性質(zhì)[A];中國(guó)顆粒學(xué)會(huì)2006年年會(huì)暨海峽兩岸顆粒技術(shù)研討會(huì)論文集[C];2006年
2 王錦輝;鐘偉;都有為;;雙鈣鈦礦氧化物Sr_2CrWO_6的輸運(yùn)性質(zhì)及鐵磁共振研究[A];第四屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2001年
相關(guān)碩士學(xué)位論文 前9條
1 曾玉琴;NiO/NiFe多層薄膜制備及其磁性能研究[D];電子科技大學(xué);2014年
2 粟暢;磁性薄膜的高頻性能表征技術(shù)研究[D];電子科技大學(xué);2015年
3 王日興;傾斜各向異性磁性多層膜中鐵磁共振的理論研究[D];湖南大學(xué);2009年
4 顧文娟;磁性膜系統(tǒng)的鐵磁共振現(xiàn)象研究[D];揚(yáng)州大學(xué);2012年
5 徐源;多晶及單晶(超)薄膜鐵磁共振線寬研究[D];東南大學(xué);2005年
6 潘靖;磁性多層膜系統(tǒng)中的交換偏置、鐵磁共振和自旋波性質(zhì)的研究[D];揚(yáng)州大學(xué);2006年
7 胡占江;化學(xué)氣相沉積法制備CrO_2薄膜的鐵磁共振研究[D];蘭州大學(xué);2013年
8 薛慧;鐵磁共振磁交換力顯微鏡的極微弱磁信息測(cè)量研究[D];中北大學(xué);2014年
9 倪春;磁性氧化物單晶薄膜的磁特性研究[D];東南大學(xué);2006年
,本文編號(hào):2082647
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2082647.html