MnZn鐵氧體磁性納米顆粒的合成、表征及磁熱效應(yīng)的研究
發(fā)布時(shí)間:2018-06-29 05:19
本文選題:MnZn磁性納米顆粒/微球 + 水熱法; 參考:《電子科技大學(xué)》2017年碩士論文
【摘要】:磁熱療是近幾年發(fā)展起來的、研究最深入的一種治療癌癥的手段。各國(guó)學(xué)者對(duì)磁性納米顆粒的制備、修飾及磁熱療中的應(yīng)用投入了大量精力,并取得了顯著進(jìn)步。但低產(chǎn)熱效率(SAR)或低升溫能力仍是限制磁性納米顆粒熱療臨床開展的重要因素。另外,要求應(yīng)用于熱療中的磁性納米顆粒呈規(guī)則球形、分散性好。因此制備形貌規(guī)則、高分散、高飽和磁化強(qiáng)度(Ms)、高SAR的磁性納米顆粒具有重大意義。首先,本文通過水熱法合成MnZn磁性納米顆粒,經(jīng)XRD、SEM、VSM等測(cè)試方法表征,證實(shí)了合成的納米顆粒純度高、呈規(guī)則球形,Ms達(dá)36.3 emu/g。并探討了反應(yīng)時(shí)間、反應(yīng)溫度、PEG相對(duì)分子質(zhì)量等對(duì)納米顆粒性能的影響,優(yōu)化水熱制備MnZn磁性納米顆粒工藝條件,為制備MnZn/Co Zn復(fù)合磁性納米顆粒作好前期工作。最佳工藝條件為:12 h、180℃、0.5 g PEG6000。另外,磁性納米顆粒不宜在空氣中退火。但該法制備的MnZn磁性納米顆粒的Ms、SAR不高。因此,接下來本論文采用以乙二醇(EG)為主的溶劑體系,溶劑熱法合成了MnZn磁性納米顆粒和磁性微球,其形貌規(guī)則,Ms高達(dá)80 emu/g,產(chǎn)熱能力均優(yōu)異。并分析了影響溫升、SAR的因素。其中在EG:H2O=2:1體系中合成的MnZn磁性納米顆粒(20 mg/m L、480 A)的SAR值最大,達(dá)119.7 W/g。并研究濃度、電流強(qiáng)度對(duì)該體系合成的納米顆粒的溫升、SAR值影響。結(jié)果表明,隨著濃度增加,溫升提高,而SAR值減小。溫升、SAR值隨著電流強(qiáng)度增大而單調(diào)增加。并發(fā)現(xiàn)最佳濃度為5 mg/m L,其SAR值最大,達(dá)224.84 W/g;同時(shí)得到低劑量(5 mg/mL)、低電流強(qiáng)度(380 A)仍具有高SAR值161.65 W/g,這更適宜于磁熱療臨床的應(yīng)用。對(duì)于不同種類、添加量表面修飾劑修飾的磁性微球的磁熱效應(yīng)研究表明:SAR值、溫升隨組成磁性微球的MnZn納米晶粒的尺寸增大而增加,與微球直徑無關(guān)。最后,水熱法制備了MnZn/CoZn復(fù)合磁性納米顆粒,其中MnZn/CoZn-PVP的SAR值達(dá)52.11 W/g,這提高了水熱法合成的MnZn磁性納米顆粒的SAR值;溶劑熱法制備的Ag@MnZn復(fù)合納米粒子、Ag@Mn Zn/R-GO復(fù)合材料都具有較高的SAR值。因?yàn)檠趸┑募尤?與Ag@MnZn復(fù)合納米粒子相比,Ag@MnZn/R-GO復(fù)合材料無論是分散性、磁性能和產(chǎn)熱能力都得到提高。另外,由于這兩種復(fù)合材料還具有Ag的特性,因此我們推測(cè)它們除了作為磁熱療中的熱介質(zhì),還在光熱療、熒光成像等領(lǐng)域存在潛在應(yīng)用。
[Abstract]:Magnetic hyperthermia has been developed in recent years. Scholars all over the world have devoted a lot of attention to the preparation, modification and application of magnetic nanoparticles, and have made remarkable progress. However, low thermal efficiency (SAR) or low heating capacity are still the important factors limiting the clinical development of magnetic nanoparticles hyperthermia. In addition, the magnetic nanoparticles required to be used in hyperthermia are regular spherical and well dispersed. Therefore, it is of great significance to prepare magnetic nanoparticles with regular morphology, high dispersion, high saturation magnetization (Ms) and high SAR. Firstly, MnZn magnetic nanoparticles were synthesized by hydrothermal method and characterized by XRDX SEM- VSM. It was proved that the synthesized nanoparticles were of high purity, with regular spherical Ms up to 36.3 emu / g. The effects of reaction time, reaction temperature and relative molecular weight of PEG on the properties of nanocrystalline particles were discussed. The conditions of hydrothermal preparation of MnZn magnetic nanoparticles were optimized, and the preliminary work was made for the preparation of MnZn/ Co-Zn composite magnetic nanoparticles. The optimum technological conditions were as follows: 1: 12 h, 180 鈩,
本文編號(hào):2081020
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2081020.html
最近更新
教材專著