鋁誘導(dǎo)非晶硅薄膜的低溫快速晶化研究
本文選題:磁控濺射 + 非晶硅薄膜。 參考:《云南師范大學(xué)》2015年碩士論文
【摘要】:非晶硅薄膜是硅基薄膜的基礎(chǔ)材料,具有吸收系數(shù)大、弱光性能好等優(yōu)點(diǎn),應(yīng)用于薄膜太陽(yáng)電池時(shí)材料用量?jī)H為體硅太陽(yáng)電池的1%左右。但非晶硅薄膜太陽(yáng)電池存在轉(zhuǎn)換效率低、光致衰減(S-W)效應(yīng)等缺陷。多晶硅、微晶硅及納米硅等晶化硅薄膜材料既有良好的光電性能,還能有效降低光致衰退等優(yōu)點(diǎn)。此外,通過(guò)控制晶化硅薄膜的晶化率、晶粒尺寸等微結(jié)構(gòu)可調(diào)控其光電性能。因此,晶化硅薄膜是理想的光伏材料之一。本文采用磁控濺射鍍膜系統(tǒng),結(jié)合快速光熱退火,開(kāi)展了鋁誘導(dǎo)非晶硅薄膜的低溫快速晶化研究。通過(guò)對(duì)晶化硅薄膜性能的表征分析,獲得了制備晶化硅薄膜的優(yōu)化工藝參數(shù);計(jì)算了薄膜的晶化率,闡釋了鋁誘導(dǎo)對(duì)晶化硅薄膜性能的影響;揭示了晶粒尺寸與帶隙等性能之間的相互關(guān)系。本文主要完成了以下幾方面的研究工作:1、通過(guò)設(shè)置不同的襯底溫度和濺射功率制備了硅薄膜。研究了不同襯底溫度和濺射功率對(duì)硅薄膜的物相結(jié)構(gòu)、沉積速率及光學(xué)性能的影響,并結(jié)合SPSS統(tǒng)計(jì)分析了薄膜的厚度均勻性。結(jié)果表明:實(shí)驗(yàn)設(shè)置的工藝范圍內(nèi)制備的硅薄膜均為非晶硅薄膜;薄膜的沉積速率、均勻性及光學(xué)性能均隨襯底溫度和濺射功率先增加后減小;獲得了較理想的鍍膜工藝參數(shù):襯底溫度200℃,功率100W。2、為了研究襯底及其溫度對(duì)鋁誘導(dǎo)非晶硅薄膜晶化的影響,制備了Glass/a-Si/Al和Si(400)/a-Si/Al結(jié)構(gòu)的復(fù)合膜,經(jīng)N2氣氛400℃退火25min,獲得了晶化硅薄膜。結(jié)果顯示:Glass/a-Si/Al結(jié)構(gòu)下的晶化硅薄膜有Si(111)和Si(220)取向的結(jié)晶峰;Si(400)/a-Si/Al結(jié)構(gòu)下的晶化硅薄膜僅出現(xiàn)與襯底相同的Si(400)結(jié)晶峰;單晶硅襯底比玻璃襯底更有利于薄膜的晶化;襯底溫度升高,有助于提高硅薄膜的晶化率,然而襯底溫度過(guò)高時(shí),薄膜的晶化率又會(huì)降低,較理想的襯底溫度為200℃。3、采用磁控濺射鍍膜系統(tǒng),在單晶硅襯底上外延生長(zhǎng)了不同厚度的硅薄膜,經(jīng)過(guò)N2氣氛400℃退火25min,研究了單晶硅襯底對(duì)非晶硅薄膜晶化的影響。結(jié)果表明:非晶硅薄膜受單晶硅的誘導(dǎo)在退火過(guò)程中形成晶化硅薄膜,其晶粒沿單晶襯底取向擇優(yōu)生長(zhǎng);隨著外延硅薄膜厚度的逐漸增加,晶化硅薄膜的晶化率、晶粒尺寸逐漸減小,表面均勻性增加。4、為了研究退火溫度對(duì)鋁誘導(dǎo)非晶硅薄膜晶化的影響,將Glass/a-Si/Al結(jié)構(gòu)的復(fù)合膜于N2氣氛中300℃~500℃下光熱退火25min。結(jié)果表明:退火處理后硅薄膜均形成了晶化硅薄膜;退火溫度從300℃逐漸升到400℃,晶化硅薄膜的晶粒尺寸、晶化率逐漸增加,表面均勻性減小;退火溫度從400℃逐漸升到500℃,晶化硅薄膜的晶粒尺寸、晶化率繼續(xù)增加,表面均勻性增加;通過(guò)對(duì)薄膜晶化率、晶粒尺寸及帶隙之間的對(duì)應(yīng)關(guān)系作三維表面圖,獲得了晶化率、晶粒尺寸與帶隙之間的關(guān)系;不同微結(jié)構(gòu)的晶化硅薄膜表面呈現(xiàn)出不同的顏色,實(shí)驗(yàn)制備了表面呈現(xiàn)黑灰色、棕色、藍(lán)色、紅色、黃色的晶化硅薄膜,作為電池P層,有望制備出彩色硅基薄膜太陽(yáng)電池。5、結(jié)合Al誘導(dǎo)非晶硅的晶化機(jī)理,設(shè)計(jì)并采用Al/Si共濺射法在玻璃襯底上制備了a-Si/Al復(fù)合膜,膜中Al、Si含量可通過(guò)濺射功率比來(lái)調(diào)節(jié)。將共濺射制備的薄膜在N2氣氛中350℃光熱退火10min可制備出晶化硅薄膜。結(jié)果表明:當(dāng)Al/Si濺射功率比為0.10時(shí)制備的晶化硅薄膜的Raman峰位于510cm-1,為納米晶硅薄膜;隨著Al含量的增加,薄膜晶化率與晶粒尺寸增加,薄膜帶隙逐漸降低。采用共濺射法可在350℃、10min的退火條件下制備出晶化率為(50.81%~88.58%)、Si(111)取向的晶化硅薄膜。
[Abstract]:Amorphous silicon thin film is the basic material of silicon based film. It has the advantages of large absorption coefficient and good weak light performance. The amount of material used in thin film solar cells is only about 1% of bulk silicon solar cells. However, amorphous silicon thin film solar cells have defects such as low conversion efficiency and light induced attenuation (S-W). Polycrystalline silicon, microcrystalline silicon and nanoscale silicon are crystalline silicon. The thin film materials have good photoelectric properties and can effectively reduce the advantages of light induced decline. In addition, by controlling the crystallization rate of the crystalline silicon thin films, the microstructures such as grain size can regulate their photoelectric properties. Therefore, the crystalline silicon thin film is one of the ideal photovoltaic materials. The low temperature and rapid crystallization of amorphous silicon films induced by aluminum was studied. Through the analysis of the properties of the crystalline silicon film, the optimized process parameters were obtained. The crystallization rate of the film was calculated, the effect of aluminum induction on the properties of the crystalline silicon film was explained, and the relationship between the grain size and the band gap properties was revealed. The main research work is completed in the following aspects: 1, silicon thin films are prepared by setting different substrate temperature and sputtering power. The effects of different substrate temperature and sputtering power on the phase structure, deposition rate and optical properties of silicon thin films are studied. The thickness uniformity of the film is analyzed by SPSS statistics. The results show that the experiment is carried out. The deposited silicon thin films are amorphous silicon thin films, and the deposition rate, uniformity and optical properties of the films are increased with the substrate temperature and sputtering power first, and the ideal coating process parameters are obtained: the substrate temperature is 200 c and the power is 100W.2. In order to study the crystallization of the amorphous silicon film induced by the substrate and its temperature, the crystallization of the film is obtained. The composite film of Glass/a-Si/Al and Si (400) /a-Si/Al structure was prepared. The crystalline silicon thin film was obtained by annealing at 400 C for 25min at N2 atmosphere. The results showed that the crystalline silicon film under Glass/a-Si/Al structure had the crystallization peak of Si (111) and Si (220) orientation; the crystalline silicon film under Si (400) /a-Si/ Al structure appeared only the same Si (400) crystallization as the substrate. The monocrystalline silicon substrate is more beneficial to the crystallization of the film than the glass substrate. The increase of the substrate temperature helps to improve the crystallization rate of the silicon film. However, the crystallization rate of the film will be reduced when the temperature is too high. The ideal substrate temperature is 200.3, and the magnetron sputtering coating system is used to grow silicon with different thickness on the monocrystalline silicon substrate. The effect of single crystal silicon substrate on the crystallization of amorphous silicon thin film was studied by N2 atmosphere at 400 C for 25min. The results showed that the amorphous silicon film was induced by monocrystalline silicon to form crystalline silicon film during the annealing process. The grain size of the amorphous silicon thin films grew along the single crystal substrate. With the increase of the thickness of the epitaxial silicon film, the crystallization rate of the crystalline silicon thin film was increased. The grain size decreased and the surface uniformity increased by.4. In order to study the effect of annealing temperature on the crystallization of amorphous silicon film induced by aluminum, the composite film of Glass/a-Si/Al structure was annealed at 300 C and ~500 C in the atmosphere of N2. The results showed that the silicon film formed the crystalline silicon film after annealing treatment; the annealing temperature gradually rose from 300 to 40. At 0 C, the grain size of the crystalline silicon film, the crystallization rate gradually increased, the surface uniformity decreased, the annealing temperature rose from 400 to 500 degrees C, the grain size of the crystalline silicon film, the crystallization rate continued to increase, the surface uniformity increased, and the crystallization rate, grain size and band gap between the film crystallization rate, the grain size and the band gap were made, and the crystallization rate was obtained. The relationship between the grain size and the band gap; the different microstructures of the crystalline silicon films show different colors. The crystalline silicon thin films with black, brown, blue, red and yellow surfaces are prepared on the surface. As the P layer of the battery, it is expected to prepare the color silicon based thin film solar cell.5, and the crystallization mechanism of amorphous silicon can be induced by Al. The a-Si/Al composite film is prepared on the glass substrate by Al/Si co sputtering. The content of Al and Si in the film can be regulated by the sputtering power ratio. The crystalline silicon film can be prepared by the photothermal annealing 10min at 350 C in the atmosphere of N2. The results show that the Raman peak of the crystalline silicon film prepared by the sputtering power ratio of 0.10 is located at 51. 0cm-1 is a nanocrystalline silicon film. With the increase of Al content, the crystallization rate and grain size of the film increase, and the band gap gradually decreases. The crystallization rate of crystalline silicon thin films with crystallization rate of (50.81%~88.58%) and Si (111) orientation can be prepared by CO sputtering at 350 C and 10min.
【學(xué)位授予單位】:云南師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 靳瑞敏;陳蘭莉;羅鵬輝;郭新峰;盧景霄;;在不同時(shí)間下退火對(duì)非晶硅薄膜晶化的影響[J];材料導(dǎo)報(bào);2008年S3期
2 田躍生;;非晶硅薄膜的金屬誘導(dǎo)晶化研究現(xiàn)狀[J];表面技術(shù);2011年05期
3 李軍利;劉衛(wèi)國(guó);周順;蔡長(zhǎng)龍;;非晶硅薄膜的鎳離子注入研究[J];表面技術(shù);2013年02期
4 張溪文,韓高榮;摻硼非晶硅薄膜的微結(jié)構(gòu)和電學(xué)性能研究[J];功能材料與器件學(xué)報(bào);2003年02期
5 饒瑞,徐重陽(yáng),王長(zhǎng)安,趙伯芳,周雪梅,曾祥斌;鋁誘導(dǎo)非晶硅薄膜低溫晶化及結(jié)構(gòu)研究[J];功能材料;2001年04期
6 陳盛;史偉民;金晶;秦娟;王漪;夏義本;;激光晶化非晶硅薄膜的表面機(jī)理研究[J];功能材料與器件學(xué)報(bào);2010年06期
7 林鴻溢;非晶硅薄膜表面與非晶須特性[J];材料科學(xué)進(jìn)展;1990年03期
8 徐二明;袁超;王俊平;霍浩磊;梁二軍;;532nm連續(xù)激光晶化非晶硅薄膜的原位拉曼光譜研究[J];光散射學(xué)報(bào);2008年03期
9 傘振雷;謝建生;李金華;;室溫非晶硅薄膜熱電阻溫度系數(shù)研究[J];常州大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年03期
10 毛友德;;非晶硅薄膜用于半導(dǎo)體器件表面鈍化的初步研究[J];貴金屬;1981年04期
相關(guān)會(huì)議論文 前10條
1 陳一匡;林揆訓(xùn);羅志;梁銳生;周甫方;;鋁誘導(dǎo)非晶硅薄膜的場(chǎng)致低溫快速晶化[A];21世紀(jì)太陽(yáng)能新技術(shù)——2003年中國(guó)太陽(yáng)能學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2003年
2 馬占潔;陳光華;何斌;劉國(guó)漢;朱秀紅;張文理;李志中;郜志華;宋雪梅;鄧金祥;;影響氫化非晶硅薄膜光衰退穩(wěn)定性的因素[A];TFC'05全國(guó)薄膜技術(shù)學(xué)術(shù)研討會(huì)論文摘要集[C];2005年
3 馬占潔;陳光華;何斌;劉國(guó)漢;朱秀紅;張文理;李志中;郜志華;宋雪梅;鄧金祥;;氫化非晶硅薄膜光衰退穩(wěn)定性的影響因素[A];全國(guó)薄膜技術(shù)學(xué)術(shù)研討會(huì)論文集[C];2006年
4 何文;成惠峰;吳云龍;;非晶硅薄膜及其制備方法研究進(jìn)展[A];促進(jìn)科技經(jīng)濟(jì)結(jié)合,,服務(wù)創(chuàng)新驅(qū)動(dòng)發(fā)展——蚌埠市科協(xié)2012年度學(xué)術(shù)年會(huì)論文集[C];2012年
5 刁宏偉;張世斌;王永謙;廖顯伯;孔光臨;;穩(wěn)定優(yōu)質(zhì)氫化非晶硅薄膜的研制[A];中國(guó)第六屆光伏會(huì)議論文集[C];2000年
6 章曙東;王永謙;張光春;施正榮;;非晶硅薄膜及太陽(yáng)電池的高速制備[A];第十屆中國(guó)太陽(yáng)能光伏會(huì)議論文集:迎接光伏發(fā)電新時(shí)代[C];2008年
7 林揆訓(xùn);林璇英;梁厚蘊(yùn);池凌飛;余楚迎;石旺舟;姚若河;黃創(chuàng)君;楊坤進(jìn);;鋁誘導(dǎo)的非晶硅薄膜低溫快速晶化[A];2000年材料科學(xué)與工程新進(jìn)展(上)——2000年中國(guó)材料研討會(huì)論文集[C];2000年
8 薛俊明;王宗畔;李洪波;胡景康;趙穎;王慶章;張德坤;耿新華;;111cm×73cm非晶硅薄膜材料的制備[A];中國(guó)太陽(yáng)能學(xué)會(huì)2001年學(xué)術(shù)會(huì)議論文摘要集[C];2001年
9 廖常庚;鄭志豪;汪永強(qiáng);楊生勝;項(xiàng)金鐘;;核反應(yīng)產(chǎn)額曲線的模擬及非晶硅薄膜中硼的深度分布研究[A];第八屆全國(guó)核物理會(huì)議文摘集(下冊(cè))[C];1991年
10 劉毅;宋雪梅;陰生毅;吳越穎;胡躍輝;鄧金祥;陳光華;;MWECR CVD制備氫化非晶硅薄膜的微結(jié)構(gòu)研究[A];21世紀(jì)太陽(yáng)能新技術(shù)——2003年中國(guó)太陽(yáng)能學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2003年
相關(guān)重要報(bào)紙文章 前10條
1 記者 宦建新;10兆瓦非晶硅薄膜電池項(xiàng)目落戶杭州[N];科技日?qǐng)?bào);2007年
2 孫吉晶邋趙科 胡劍軍;大型非晶硅薄膜電池項(xiàng)目落戶慈溪[N];寧波日?qǐng)?bào);2007年
3 天軒邋孫人杰 韓暉;一期投產(chǎn) 二期奠基[N];常州日?qǐng)?bào);2008年
4 本報(bào)記者 馬明邋通訊員 卞靈霞;強(qiáng)生光電:有望成世界級(jí)非晶硅薄膜電池生產(chǎn)商[N];中國(guó)工業(yè)報(bào);2008年
5 莊俊華;亞洲最大非晶硅薄膜光電項(xiàng)目在大理開(kāi)建[N];云南日?qǐng)?bào);2008年
6 驀妮;非晶硅薄膜太陽(yáng)能成發(fā)展主流[N];中國(guó)建設(shè)報(bào);2010年
7 特約記者 趙文龍;非晶硅薄膜電池項(xiàng)目落戶通遼[N];中國(guó)化工報(bào);2010年
8 記者 高一;亞洲最大非晶硅薄膜光電項(xiàng)目落戶云南大理[N];上海證券報(bào);2008年
9 尚京云;年產(chǎn)120兆瓦太陽(yáng)能非晶硅薄膜光電項(xiàng)目奠基[N];大理日?qǐng)?bào)(漢);2008年
10 ;非晶硅薄膜主導(dǎo)太陽(yáng)能發(fā)展[N];21世紀(jì)經(jīng)濟(jì)報(bào)道;2009年
相關(guān)博士學(xué)位論文 前1條
1 胡躍輝;高速沉積大面積均勻氫化非晶硅薄膜及其優(yōu)異的光電特性的研究[D];北京工業(yè)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 李付賢;P型非晶硅薄膜制備及AZO薄膜表面制絨的研究[D];陜西師范大學(xué);2015年
2 王垠;非晶硅薄膜及其與晶體硅的界面優(yōu)化研究[D];電子科技大學(xué);2014年
3 陳逢彬;非晶硅薄膜熱光特性理論與工藝研究[D];電子科技大學(xué);2015年
4 吳易龍;非晶硅薄膜紅外特性與制備工藝研究[D];電子科技大學(xué);2014年
5 段良飛;鋁誘導(dǎo)非晶硅薄膜的低溫快速晶化研究[D];云南師范大學(xué);2015年
6 陳一匡;鋁誘導(dǎo)非晶硅薄膜的場(chǎng)致低溫快速晶化[D];汕頭大學(xué);2004年
7 段國(guó)平;本征非晶硅薄膜的激光晶化研究[D];河南大學(xué);2012年
8 吳茂陽(yáng);低阻高TCR非晶硅薄膜制備及性能研究[D];電子科技大學(xué);2011年
9 楊晟;金屬誘導(dǎo)非晶硅薄膜低溫晶化研究[D];武漢理工大學(xué);2006年
10 潘震;氫化非晶硅薄膜的直流和射頻磁控濺射法制備及其表征[D];武漢理工大學(xué);2009年
本文編號(hào):2033519
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/2033519.html