硼摻雜石墨烯量子點(diǎn)的制備、熒光特性及分析應(yīng)用
發(fā)布時(shí)間:2018-06-01 19:45
本文選題:熒光檢測(cè) + 鐵離子。 參考:《南京師范大學(xué)》2017年碩士論文
【摘要】:石墨烯量子點(diǎn)作為一種新興的熒光碳納米材料,不僅具有類(lèi)似傳統(tǒng)半導(dǎo)體量子點(diǎn)的小尺寸和熒光性能,還具有低細(xì)胞毒性、化學(xué)惰性、穩(wěn)定的熒光特性等優(yōu)點(diǎn)而備受人們關(guān)注,極有希望成為在小分子檢測(cè)和生物成像等熒光分析應(yīng)用中傳統(tǒng)半導(dǎo)體量子點(diǎn)的替代物。雜原子摻雜能有效調(diào)控石墨烯量子點(diǎn)的表面化學(xué)狀態(tài),提高熒光性能而被廣泛應(yīng)用于石墨烯量子點(diǎn)的制備過(guò)程中。本論文旨在基于硼摻雜石墨烯量子點(diǎn)的熒光特性,實(shí)現(xiàn)對(duì)水樣中的鐵離子及腫瘤標(biāo)志物堿性磷酸酶的特異性熒光分析,為環(huán)境的保護(hù)和腫瘤的早期診斷提供快速、精準(zhǔn)、靈敏及高效的方法。主要內(nèi)容如下:(1)采用了一種簡(jiǎn)單的電化學(xué)方法合成了硼摻雜石墨烯量子點(diǎn)。通過(guò)施加恒電位于浸入硼砂溶液中的石墨電極,電解石墨電極獲得含有硼摻雜石墨烯量子點(diǎn)的溶液,將所得溶液過(guò)濾,透析所得濾液并真空干燥后得到硼摻雜石墨烯量子點(diǎn)固體,所得硼摻雜石墨烯量子點(diǎn)粒徑均一,發(fā)藍(lán)色熒光,室溫下可穩(wěn)定存在數(shù)月。通過(guò)改變硼砂溶液的濃度,得到了不同硼摻雜量的硼摻雜石墨烯量子點(diǎn),進(jìn)而研究了硼摻雜石墨烯量子點(diǎn)的激發(fā)波長(zhǎng)依賴(lài)和硼摻雜量依賴(lài)的熒光特性。(2)設(shè)計(jì)了一種硼摻雜石墨烯量子點(diǎn)熒光探針?lè)治鏊畼又需F離子含量。實(shí)驗(yàn)結(jié)果顯示硼摻雜石墨烯量子點(diǎn)熒光信號(hào)的淬滅程度與水樣中鐵離子的濃度相關(guān),但不受其他水樣中可能存在的其它金屬離子影響,故能實(shí)現(xiàn)對(duì)鐵離子的特異性檢測(cè)。利用光譜分析和密度泛函理論計(jì)算進(jìn)一步研究了硼摻雜石墨烯量子點(diǎn)與鐵離子之間的淬滅機(jī)理。分析結(jié)果顯示水樣中鐵離子的濃度在0.01-100μmol/L范圍內(nèi)時(shí),鐵離子的濃度與所設(shè)計(jì)的熒光探針的熒光信號(hào)呈線性關(guān)系,最低檢出限為0.005 ± 0.001 μmol/L,遠(yuǎn)低于WHO和EPA制定的飲用水標(biāo)準(zhǔn)中鐵離子的含量(0.3ppm,5.36μmol/L),說(shuō)明此方法在實(shí)際水樣的檢測(cè)中有巨大潛能。在三種實(shí)際水樣(自來(lái)水、地表水和湖水)的檢測(cè)中,檢測(cè)結(jié)果與EPA推薦的原子吸收光譜法所測(cè)結(jié)果基本一致。(3)設(shè)計(jì)一種能夠檢測(cè)腫瘤細(xì)胞中堿性磷酸酶的表達(dá)水平的硼摻雜石墨烯量子點(diǎn)熒光探針。主要原理是鈰離子與硼摻雜石墨烯量子點(diǎn)表面的羧基存在強(qiáng)相互作用導(dǎo)致硼摻雜石墨烯量子點(diǎn)的熒光被淬滅,當(dāng)體系中存在腺苷三磷酸,細(xì)胞(如堿性磷酸酶正表達(dá)細(xì)胞:MCF-7細(xì)胞)表達(dá)的堿性磷酸酶將催化水解腺苷三磷酸產(chǎn)生磷酸根,水解產(chǎn)生的磷酸根與鈰離子的強(qiáng)結(jié)合作用使得鈰離子離開(kāi)硼摻雜石墨烯量子點(diǎn)表面,硼摻雜石墨烯量子點(diǎn)的熒光得到恢復(fù),且熒光信號(hào)的恢復(fù)程度與細(xì)胞表達(dá)的堿性磷酸酶水平相關(guān),故基于此原理建立了分析細(xì)胞中堿性磷酸酶的方法。此法能有效避免非靶細(xì)胞的非特異性吸收的雜信號(hào),也可用于堿性磷酸酶相關(guān)的酶的檢測(cè)領(lǐng)域。
[Abstract]:As a new kind of fluorescent carbon nanomaterials, graphene quantum dots not only have small size and fluorescence properties similar to traditional semiconductor quantum dots, but also have the advantages of low cytotoxicity, chemical inertia, stable fluorescence properties and so on. It is very promising to be a substitute for traditional semiconductor quantum dots in fluorescent analysis applications such as small molecule detection and biological imaging. Hetero-atom doping can effectively regulate the surface chemical state of graphene quantum dots and improve their fluorescence properties, so they are widely used in the preparation of graphene quantum dots. Based on the fluorescence characteristics of boron doped graphene quantum dots, the specific fluorescence analysis of iron ions and alkaline phosphatase (ALP) in water samples was carried out in order to provide a rapid and accurate method for the protection of the environment and the early diagnosis of tumors. A sensitive and efficient method. The main contents are as follows: 1) the boron doped graphene quantum dots were synthesized by a simple electrochemical method. The solution containing boron doped graphene quantum dots is obtained by electrolysis of graphite electrode by applying a constant electric graphite electrode immersed in borax solution, and the resulting solution is filtered. The boron doped graphene quantum dots were prepared by dialyzing filtrate and vacuum drying. The boron doped graphene quantum dots were homogeneous in size and blue fluorescence. The QDs were stable for several months at room temperature. By changing the concentration of borax solution, boron doped graphene quantum dots with different boron doping amounts were obtained. The excitation wavelength dependence and the fluorescence characteristics of boron doped graphene quantum dots were studied. A boron doped graphene quantum dot fluorescence probe was designed for the determination of iron ion content in water samples. The experimental results show that the quenching degree of fluorescence signal of boron doped graphene quantum dots is related to the concentration of iron ions in water samples, but it is not affected by other metal ions in other water samples, so the specific detection of iron ions can be realized. The quenching mechanism between boron doped graphene quantum dots and iron ions was further studied by means of spectral analysis and density functional theory. The results show that when the concentration of iron ion in water is in the range of 0.01-100 渭 mol/L, there is a linear relationship between the concentration of iron ion and the fluorescence signal of the designed fluorescent probe. The lowest detection limit is 0.005 鹵0.001 渭 mol 路L ~ (-1), which is much lower than that of Fe ~ (2 +) in drinking water standards set by WHO and EPA (0.3ppmN ~ 5.36 渭 mol 路L ~ (-1), indicating that this method has great potential in the detection of real water samples. In the detection of three actual water samples (tap water, surface water and lake water), The results were in good agreement with the AAS recommended by EPA.) A boron-doped graphene quantum dot fluorescence probe was designed to detect the expression of alkaline phosphatase in tumor cells. The main principle is that the existence of strong interaction between cerium ion and carboxyl groups on the surface of boron doped graphene quantum dots results in fluorescence quenching of boron doped graphene quantum dots, when adenosine triphosphate exists in the system. Alkaline phosphatase, expressed in cells such as the positive expression of alkaline phosphatase (ALP) cells, will catalyze the hydrolysis of adenosine triphosphate to produce phosphate radical. The strong binding of phosphates produced by hydrolysis to cerium ions makes the cerium ions leave the surface of boron doped graphene quantum dots and restore the fluorescence of boron doped graphene quantum dots. The recovery degree of fluorescence signal was related to the level of alkaline phosphatase expressed in cells, so a method for analyzing alkaline phosphatase in cells was established based on this principle. This method can effectively avoid the non-specific absorption of non-target cells and can also be used for the detection of alkaline phosphatase related enzymes.
【學(xué)位授予單位】:南京師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TB383.1;O657.3
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳峰;蔡繼業(yè);;基于量子點(diǎn)的熒光共振能量轉(zhuǎn)移的應(yīng)用[J];化學(xué)與生物工程;2007年01期
2 季雷華;高素蓮;張斌;;量子點(diǎn)的合成、毒理學(xué)及其應(yīng)用[J];環(huán)境化學(xué);2008年05期
3 王富;劉春艷;;發(fā)光碳量子點(diǎn)的合成及應(yīng)用[J];影像科學(xué)與光化學(xué);2011年04期
4 伊魁宇;王猛;邵明云;;量子點(diǎn)作為離子探針的分析應(yīng)用[J];廣州化工;2012年11期
5 羅慧;李曦;方婷婷;劉鵬;;量子點(diǎn)的毒性研究進(jìn)展[J];材料導(dǎo)報(bào);2013年19期
6 田瑞雪;武玲玲;趙清;胡勝亮;楊金龍;;碳量子點(diǎn)的氨基化及其對(duì)發(fā)光性能的影響[J];化工新型材料;2014年01期
7 ;“量子點(diǎn)”晶體將推動(dòng)部分物理工藝的進(jìn)步[J];光機(jī)電信息;2002年10期
8 徐萬(wàn)幫;汪勇先;許榮輝;尹端l,
本文編號(hào):1965407
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1965407.html
最近更新
教材專(zhuān)著