雙脈沖電場(chǎng)及靶電流密度對(duì)TiN薄膜結(jié)構(gòu)和性能的影響
本文選題:放電區(qū)間 + 雙脈沖電場(chǎng)。 參考:《西安理工大學(xué)》2017年碩士論文
【摘要】:針對(duì)TiN薄膜現(xiàn)主流制備技術(shù)中,傳統(tǒng)磁控濺射沉積粒子離化率低和多弧離子鍍存在高溫熔滴噴濺等技術(shù)不足,依據(jù)等離子體物理學(xué)中氣體放電基礎(chǔ)理論,通過(guò)構(gòu)建雙脈沖電場(chǎng)環(huán)境將氣體放電引入輝光放電區(qū)和弧光放電區(qū)之間的強(qiáng)輝弱弧區(qū)間。利用該區(qū)間內(nèi)具有的較大電場(chǎng)強(qiáng)度和電流密度的特性,增強(qiáng)正離子對(duì)陰極靶面的轟擊強(qiáng)度和陰極靶材內(nèi)部的焦耳熱效應(yīng),誘發(fā)靶面沉積粒子以碰撞增強(qiáng)熱發(fā)射方式脫靶,并獲得較磁控濺射沉積粒子更高的離化率和更高的密度。同時(shí),雙脈沖電場(chǎng)模式所具有的階梯式脈沖特性,不僅可利用前期弱離化階段的原子電離降低后期強(qiáng)離化階段的極間場(chǎng)強(qiáng),并通過(guò)減少沉積粒子再次返回陰極靶面的幾率以提升薄膜的平均沉積速率,而且還可利用前期弱離化階段給予基體一定的離子轟擊,增加后期強(qiáng)離化階段沉積粒子在基體表面的擴(kuò)散能,為制備出結(jié)構(gòu)致密細(xì)化的薄膜提供了有利條件。本課題在不同伏安特性的放電區(qū)間制備三組TiN薄膜,同時(shí)在強(qiáng)輝弱弧區(qū)采用雙脈沖電場(chǎng)在不同峰值靶電流密度下制備四組TiN薄膜,通過(guò)對(duì)薄膜的微觀結(jié)構(gòu)、力學(xué)、摩擦學(xué)及耐腐蝕性能的檢測(cè)與分析,得到以下結(jié)論:相同靶功率條件下,雙脈沖電場(chǎng)強(qiáng)輝弱引弧區(qū)制備的TiN薄膜相比直流電場(chǎng)輝光區(qū)制備的薄膜,具有較低的正反厚度比值(1.9)、接近的平均沉積速率(31nm/min)、較高的實(shí)時(shí)沉積速率(155.4nm/min)。由此說(shuō)明利用雙脈沖電場(chǎng)在強(qiáng)輝弱弧區(qū)可獲得具有更高離化率和更高密度的沉積粒子。同時(shí)強(qiáng)輝弱弧區(qū)制備的TiN薄膜表面粗糙度為24nm,截面為柱狀生長(zhǎng)結(jié)構(gòu),改善了輝光區(qū)制備薄膜具有的疏松柱狀結(jié)構(gòu),同時(shí)避免了弧光區(qū)由于高溫熔融液滴的噴濺而造成薄膜具有較大的表面粗糙度(Rms=165nm)。通過(guò)對(duì)薄膜力學(xué)、摩擦學(xué)和耐腐蝕性能的研究發(fā)現(xiàn):采用雙脈沖電場(chǎng)模式在強(qiáng)輝弱弧區(qū)制備的TiN薄膜表現(xiàn)出27GPa的顯微硬度,309GPa的彈性模量,19N的膜基結(jié)合力,以及1.4425×10-141m3/N·m的比磨損率,同時(shí)腐蝕速率的值為0.003mmm/a。利用雙脈沖電場(chǎng)在不同峰值靶電流密度下制備多組TiN薄膜。通過(guò)對(duì)薄膜微觀結(jié)構(gòu)的研究發(fā)現(xiàn):當(dāng)峰值靶電流密度為0.87A/cm2時(shí)制備的薄膜具有顆粒細(xì)小致密的表面形貌和柱狀的截面形貌。通過(guò)對(duì)薄膜力學(xué)、摩擦學(xué)和耐腐蝕性能的研究發(fā)現(xiàn):隨著峰值靶電流密度的增加,TiN薄膜的硬度從10.2GPa ( 0.27A/cm2 )增加到29.5GPa(0.87A/cm2)。平均摩擦系數(shù)和磨損率分別從0.9和1.383×10-13m3/N·m (0.27A/cm2)減小到0.67和2.7×10-15m3/N·m (0.87A/cm2)。腐蝕電流密度和腐蝕速率分別從3.4×10-8 A/cm2 和 1.78×10-4mm/a (0.27A/cm2) 減小到1.1×10-8A/cm2 和 5.52×10-5mm/a(0.87A/cm2)。
[Abstract]:In the mainstream preparation technology of TiN thin films, the low ionization rate of the traditional magnetron sputtering particles and the high temperature droplet splashing in the multi arc ion plating are insufficient. According to the basic theory of gas discharge in the plasma physics, the gas discharge is introduced into the glow discharge region and the arc discharge region by constructing the dual pulse electric field environment. The weak arc interval, using the characteristics of the larger electric field intensity and current density in the interval, enhances the bombardment intensity of the positive ion to the cathode target and the Joule heat effect inside the cathode target, induces the target surface deposited particles to be off target with the collision enhanced thermal emission, and obtains a higher ionization rate and higher density than the magnetron sputtering deposited particles. At the same time, the step pulse characteristics of the double pulse electric field model can not only reduce the interpolar field intensity in the late stage of strong ionization by atomic ionization at the early weak ionization stage, but also improve the average sedimentation rate of the film by reducing the probability of returning the deposited particles to the cathode target to improve the average sedimentation rate, and also can be used in the early stage of the weak ionization stage. A certain ion bombardment is given to the matrix to increase the diffusion energy of the deposited particles on the substrate at the late stage of strong ionization. It provides a favorable condition for the preparation of a thin film with dense structure. Three groups of TiN films are prepared in the discharge range of different volt ampere characteristics. At the same time, two pulse electric fields are used in the strong weak arc region at different peak target current density. By measuring and analyzing the microstructure, mechanics, tribology and corrosion resistance of the four groups of TiN films, the following conclusions are obtained: under the same target power, the TiN films prepared by the double pulse electric field and weak arcing zone have a lower ratio of positive and negative thickness (1.9) to the films prepared by the DC electric field. The average deposition rate (31nm/min) and higher real time deposition rate (155.4nm/min). Thus, it is indicated that the deposition particles with higher ionization and higher density can be obtained by double pulse electric field in the weak arc region of the strong glow. The surface roughness of the TiN thin film prepared by the weak arc region of the strong glow is 24nm, the cross section is columnar growth structure, and the preparation of the glow area is improved. The membrane has a loose columnar structure and avoids the larger surface roughness (Rms=165nm) of the film due to the splash of high temperature molten droplets in the arc region. Through the study of the film mechanics, tribology and corrosion resistance, it is found that the TiN thin film prepared by the double pulse electric field mode in the strong weak arc region shows the microhardness of 27GPa. The modulus of elasticity of 309GPa, the film based bonding force of 19N, and the specific wear rate of 1.4425 x 10-141m3/N. M at the same time, the value of the corrosion rate is 0.003mmm/a. using double pulse electric field to prepare a multi group of TiN thin film under the different peak target current density. It is found that the hardness of TiN films increases from 10.2GPa (0.27A/cm2) to 29.5GPa (0.87A/cm2) with the increase of the peak target current density. The average friction coefficient and wear rate are 0.9 and 1.383 * 10-13m3/, respectively. N. M (0.27A/cm2) decreases to 0.67 and 2.7 x 10-15m3/N. M (0.87A/cm2). Corrosion current density and corrosion rate are reduced from 3.4 x 10-8 A/cm2 and 1.78 x 10-4mm/a (0.27A/cm2) to 1.1 x 10-8A/cm2 and 5.52 * 10-5mm/a (0.87A/cm2).
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB383.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高英俊;盧成健;黃禮琳;羅志榮;黃創(chuàng)高;;晶界位錯(cuò)運(yùn)動(dòng)與位錯(cuò)反應(yīng)過(guò)程的晶體相場(chǎng)模擬[J];金屬學(xué)報(bào);2014年01期
2 朱雪梅;馬永樂(lè);張琳;;離子束增強(qiáng)沉積TiN薄膜的耐蝕性[J];大連交通大學(xué)學(xué)報(bào);2013年06期
3 馬志康;高原;蔡航偉;王成磊;袁琳;張焱;吳煒欽;;201不銹鋼表面弧光離子鍍TiN和CrN薄膜的耐蝕性[J];腐蝕與防護(hù);2013年08期
4 杜博;袁琳;梁斌就;姚園;吳震;王成磊;高原;;多弧離子鍍TiN涂層工藝及耐蝕性研究[J];桂林電子科技大學(xué)學(xué)報(bào);2012年01期
5 曹政;蔣百靈;魯媛媛;王濤;;磁場(chǎng)非平衡度對(duì)CrN_x鍍層性能的影響[J];材料研究學(xué)報(bào);2011年03期
6 李洪濤;蔣百靈;楊波;曹政;;濺射環(huán)境下基片表面所受到的轟擊能量研究[J];人工晶體學(xué)報(bào);2011年03期
7 徐濱士;譚俊;陳建敏;;表面工程領(lǐng)域科學(xué)技術(shù)發(fā)展[J];中國(guó)表面工程;2011年02期
8 蔣百靈;曹政;魯媛媛;欒亞;;磁場(chǎng)閉合度對(duì)等離子體空間分布狀態(tài)及CrN_x鍍層沉積效率的影響[J];材料熱處理學(xué)報(bào);2011年01期
9 李洪濤;蔣百靈;楊波;付楊洪;;電場(chǎng)環(huán)境對(duì)磁控濺射純Cr薄膜沉積過(guò)程的影響[J];功能材料;2010年11期
10 李莎;閻殿然;董艷春;王師;高國(guó)旗;張志彬;;反應(yīng)等離子噴涂TiN涂層電化學(xué)腐蝕行為[J];北京科技大學(xué)學(xué)報(bào);2009年09期
相關(guān)碩士學(xué)位論文 前4條
1 畢明康;磁場(chǎng)增強(qiáng)高功率脈沖磁控濺射放電特性及TiAlN薄膜制備研究[D];哈爾濱工業(yè)大學(xué);2014年
2 楊怡帆;多弧離子鍍制備裝飾TiN薄膜及其顏色和性能的研究[D];華南理工大學(xué);2012年
3 李序東;磁控濺射制備TiB_2薄膜及薄膜特性研究[D];華東理工大學(xué);2012年
4 楊凱;反應(yīng)磁控濺射法制備TiN薄膜的研究[D];東南大學(xué);2006年
,本文編號(hào):1963782
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1963782.html