天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 材料論文 >

無(wú)機(jī)納米材料的制備及其在生物分析中的應(yīng)用

發(fā)布時(shí)間:2018-05-31 12:31

  本文選題:量子點(diǎn) + 熒光共振能量轉(zhuǎn)移; 參考:《東北大學(xué)》2015年博士論文


【摘要】:無(wú)機(jī)納米材料因其維度的逐漸降低,在光、電、磁、聲等方面表現(xiàn)出不同于常規(guī)材料的優(yōu)良的物理和化學(xué)性質(zhì)。無(wú)機(jī)納米材料與生物和化學(xué)分析技術(shù)的深入結(jié)合已成為國(guó)內(nèi)外生物醫(yī)學(xué)分析和環(huán)境分析領(lǐng)域的前沿和熱點(diǎn)問(wèn)題。然而,目前大部分基于納米材料的傳感器由于受到高消耗、抗干擾能力差以及不穩(wěn)定等分析性能的限制,仍然處于實(shí)驗(yàn)室研究階段。同時(shí)以納米材料負(fù)載的藥物的可控性釋放亟待研究。基于上述背景,本論文旨在將納米材料引入到化學(xué)/生物傳感器以及藥物負(fù)載和可控性藥物釋放之中:(1)結(jié)合無(wú)機(jī)納米材料優(yōu)良的光學(xué)性能,有目的性的設(shè)計(jì)納米探針,構(gòu)建具有較好抗干擾能力、穩(wěn)定性好以及靈敏度高的分析方法,應(yīng)用于生物和環(huán)境樣品的分析;(2)設(shè)計(jì)合成多功能的納米復(fù)合材料,以實(shí)現(xiàn)藥物的負(fù)載和可控性釋放,提高殺菌治療效率,減少或避免廣譜抗菌藥物的使用以及物理殺菌帶來(lái)的組織損傷或水體中營(yíng)養(yǎng)物質(zhì)損失。論文的第一章簡(jiǎn)要介紹了無(wú)機(jī)納米材料的種類、物理化學(xué)性質(zhì)和應(yīng)用。詳細(xì)介紹了半導(dǎo)體納米晶和金納米棒兩種無(wú)機(jī)納米材料的組成、分類、光學(xué)性質(zhì)以及在生物和環(huán)境分析中的應(yīng)用。論文的第二章合成了以N-乙酰-L-半胱氨酸為穩(wěn)定劑的量子點(diǎn)(NAC-QDs)和對(duì)汞有特異性響應(yīng)的羅丹明6G衍生物(R6G-D),并對(duì)它們進(jìn)行了紅外光譜、核磁共振氫譜表征;贜AC-QDs和R6G-D對(duì)汞離子的熒光響應(yīng)及它們吸收/發(fā)射光譜的重疊,建立了NAC-QDs/R6G-D熒光共振能量轉(zhuǎn)移體系,用于汞的比率熒光檢測(cè),并對(duì)標(biāo)準(zhǔn)樣品和環(huán)境水樣中的汞離子進(jìn)行了定量檢測(cè)。檢測(cè)汞的線性范圍為5-250 μgmL-1,精密度為3.2%(175μg L-1,n=11),檢出限為0.75μg L-1(3σ/s,n=11)。該FRET傳感體系能夠在0-250 μg mL-1濃度范圍內(nèi)隨著汞離子的濃度呈現(xiàn)色差變化,可以對(duì)汞離子進(jìn)行半定量可視化檢測(cè),辨別性能可達(dá)50μg L-1。本文所建立的比率熒光FRET檢測(cè)平臺(tái)能夠通過(guò)雙波長(zhǎng)熒光強(qiáng)度比成功的避免檢測(cè)器帶來(lái)的干擾,具有較高的靈敏度、良好的選擇性、且檢測(cè)過(guò)程簡(jiǎn)單、檢測(cè)結(jié)果準(zhǔn)確。本方法能夠在降低成本的情況下實(shí)現(xiàn)環(huán)境及生物樣品中待測(cè)物的準(zhǔn)確定量檢測(cè)和可視化半定量檢測(cè)。論文的第三章合成了金納米棒包覆/卡那霉素負(fù)載的中空二氧化硅納米囊(HSKAurod)。納米復(fù)合材料HSKAurod納米囊同時(shí)具備了金納米棒的物理光熱殺菌性能和殺菌藥物卡那霉素的化學(xué)殺菌性能,能夠在光熱治療的同時(shí)實(shí)現(xiàn)藥物的負(fù)載與可控性釋放。以中空二氧化硅納米囊作為藥物載體負(fù)載廣譜抗菌藥卡那霉素,將金納米棒作為近紅外光熱響應(yīng)材料包覆于納米囊表面,避免負(fù)載的卡那霉素的泄漏。選取大腸桿菌E. coli BL21為目標(biāo)菌株,研究了HSKAurod納米復(fù)合材料的殺菌性能和殺菌機(jī)理。HSKAurod納米囊具有很高的光熱轉(zhuǎn)換效率,10mgmL-1的材料能在近紅外光(785 nm)照射20 min內(nèi)使環(huán)境溫度由室溫的21℃迅速升至50℃。HSKAurod納米囊的殺菌性能顯著提高,10 mg mL-1的HSKAurod納米囊在近紅外光照射處理20 min后,細(xì)菌殺死率幾乎達(dá)到100%。這表明物理殺菌與化學(xué)殺菌的結(jié)合可以產(chǎn)生殺菌的協(xié)同作用,有效降低了抗菌藥物的用量,縮短了光熱治療的時(shí)間,降低了物理殺菌帶來(lái)的生物組織損傷。HSKAurod納米囊有潛力代替?zhèn)鹘y(tǒng)的殺菌劑,應(yīng)用于臨床殺菌的輔助治療。論文的第四章設(shè)計(jì)并合成了雙金屬核-殼-殼金-銀-金納米棒(Au-Ag-Au nanorods)作為近紅外光區(qū)內(nèi)的光熱殺菌材料。Au-Ag-Au nanorods外層金殼能夠在近紅外光照射下消融而使中間的銀殼層暴露出來(lái),實(shí)現(xiàn)抗菌的銀殼層/Ag+的可控性釋放。這種將外層金殼的光熱殺菌與中間銀殼層/Ag+的可控性釋放相結(jié)合,賦予了Au-Ag-Au nanorods卓越的殺菌性能。以大腸桿菌E. coli 0157:H7為細(xì)菌模板,研究了雙金屬核-殼-殼納米棒的殺菌性能和殺菌機(jī)理。在低功率的近紅外激光照射下,外殼金層使pAu-Ag-Au nanorods(44℃)展現(xiàn)了優(yōu)于金-銀納米棒(Au-Ag nanorods,39℃)的光熱轉(zhuǎn)換性能。與此同時(shí)雙金屬納米棒的核-殼-殼結(jié)構(gòu)使其具有比Au-Ag nanorods更好的化學(xué)穩(wěn)定性,16天內(nèi)Au-Ag-Au nanorods的吸收光譜穩(wěn)定,吸光度無(wú)變化。10μgmL-1的Au-Ag-Au nanorods在近紅外光照射10 min就能使周圍溶液的溫度達(dá)到44℃,在近紅外光照射20 min時(shí)對(duì)大腸桿菌E. coli 0157:H7的殺死率達(dá)到100%。雙金屬核-殼-殼Au-Ag-Au nanorods用于殺菌,成功避免了廣譜抗菌藥物的使用,減少了材料的用量,提高了殺菌效率,同時(shí)低功率近紅外光的使用降低了對(duì)生物組織帶來(lái)的損傷。上述特性使雙金屬核-殼-殼Au-Ag-Au nanorods有望成為一種新型的納米光熱轉(zhuǎn)換材料用于體內(nèi)的生物醫(yī)學(xué)研究。論文的第五章首先通過(guò)一步法合成了帶正電的磁性rGO-Fe3O4-PEI納米材料,并在還原氧化石墨烯片層上負(fù)載大量的雙金屬核-殼-殼Au-Ag-Au nanorods,得到的rGO-Fe3O4-Au-Ag-Au納米復(fù)合材料作為近紅外光熱材料,用于細(xì)菌的捕獲、分離和殺死。以大腸桿菌E. coli O157:H7為目標(biāo)菌株,分別研究了納米復(fù)合材料對(duì)細(xì)菌的捕獲能力、磁分離能力、光熱轉(zhuǎn)換效率以及殺菌性能。rGO-Fe3O4磁性材料的組裝,使得rGO-Fe3O4-Au-Ag-Au納米復(fù)合材料在近紅外光熱殺菌的同時(shí),還能對(duì)細(xì)菌進(jìn)行識(shí)別捕獲并從水體樣品中磁分離出來(lái)O30 μgmL-1的rGO-Fe3O4-Au-Ag-Au在磁場(chǎng)作用下10 mmin內(nèi)就能100%識(shí)別捕獲濃度為1 × 108 cfu mL-1的E. coli O157:H7并將其從溶液中磁分離除去。rGO-Fe3O4自身具有一定的光熱轉(zhuǎn)換性能,加上石墨烯材料超好的導(dǎo)熱性能,組裝后有效提高了納米復(fù)合材料的光熱轉(zhuǎn)換效率,25 μg mL-1的rGO-Fe3O4-Au-Ag-Au在近紅外光照射10 min可使周圍溶液的溫度升高22℃。Au-Ag-Au nanorods經(jīng)過(guò)磁性材料rGO-Fe3O4組裝后,殺菌效果增強(qiáng),30 μg mL-1的rGO-Fe3O4-Au-Ag-Au納米復(fù)合材料在經(jīng)磁分離后,近紅外光照射20 min達(dá)到100%的殺菌效果。納米復(fù)合材料rGO-Fe3O4-Au-Ag-Au能夠有效的將磁分離與光熱殺菌相結(jié)合,在提高殺菌效率、減少貴金屬納米棒用量的同時(shí),還能將細(xì)菌從水體樣本中分離去除。整個(gè)細(xì)菌捕獲分離和滅活過(guò)程操作簡(jiǎn)單可行。
[Abstract]:Inorganic nanomaterials exhibit excellent physical and chemical properties different from conventional materials in the light, electricity, magnetism and sound, because of their gradual reduction in dimensions. The deep integration of inorganic nanomaterials with biological and chemical analysis technology has become a frontier and hot issue in the field of biomedical analysis and environmental analysis at home and abroad. However, the present large amount of research has been made in the field of biomedical analysis and environmental analysis. Some sensors based on nanomaterials are still in the laboratory research stage because of their high consumption, poor anti-interference ability and instability. Meanwhile, the controllable release of nanoparticles loaded with nanomaterials needs to be studied. Based on the above background, this paper aims to introduce nanomaterials into chemical / biological sensors. As well as drug loading and controlled drug release: (1) combining the excellent optical properties of inorganic nanomaterials, designing nano probes with purpose, building an analytical method with good anti-interference ability, good stability and high sensitivity, applied to the analysis of biological and environmental samples, and (2) design and synthesis of multi-functional nanocomposites. In order to realize the load and controllable release of drugs, improve the efficiency of bactericidal treatment, reduce or avoid the use of broad-spectrum antibiotics, the tissue damage caused by physical sterilization, or the loss of nutrients in the water. The first chapter of the paper briefly introduces the types, physical and chemical properties and applications of inorganic nanomaterials. The composition, classification, optical properties and applications in biological and environmental analysis of two inorganic nanomaterials of nanocrystalline and gold nanorods. The second chapter of the paper synthesizes the quantum dots (NAC-QDs) with N- acetyl -L- cysteine as the stabilizer and the Luo Danming 6G derivative (R6G-D) that have specific response to mercury, and the infrared spectra of them are carried out. Based on the fluorescence response of NAC-QDs and R6G-D to the fluorescence of mercury ions and the overlap of their absorption / emission spectra, a NAC-QDs/R6G-D fluorescence resonance energy transfer system was established to detect the ratio fluorescence of mercury and the quantitative detection of mercury ions in standard samples and environmental water samples. The linear range of the detection of mercury was 5-250. The precision is 3.2% (175 g L-1, n=11) and the detection limit is 0.75 mu g L-1 (3 Sigma /s, n=11). The FRET sensing system can change the chromatic aberration with the concentration of mercury ions in the concentration range of 0-250 mu g mL-1, and can be semi quantitative visual detection of mercury ions. The discriminability can reach the ratio of 50 mu g. The platform has high sensitivity, good selectivity, and the detection process is simple and the result is accurate. The method can realize the accurate quantitative detection and visual semi quantitative detection of the environment and biological samples in the environment and biological samples under the condition of reducing the cost. The third chapter of the paper synthesizes the hollow silica nanoscale (HSKAurod) loaded with gold nanorods coated with kanamycin. The nano composite HSKAurod nanomaterials also possess the physical and thermal germicidal properties of the gold nanorods and the chemical bactericidal properties of kanamycin, which can carry out the drug load and can be carried out at the same time as the photothermal treatment. Controlled release. The hollow silica nanoscale was used as a drug carrier to load the broad-spectrum antimicrobial kanamycin, and the gold nanorods were coated on the surface of nanoscale as near infrared photothermal response materials to avoid the leakage of kanamycin load. The bactericidal properties of HSKAurod nanocomposites were studied by selecting E. coli BL21 as the target strain. Energy and bactericidal mechanism.HSKAurod nanocapsts have high photothermal conversion efficiency. 10mgmL-1 materials can increase the environmental temperature from 21 C to 50.HSKAurod nanoscale rapidly in near infrared light (785 nm), and the bactericidal properties of the 10 mg mL-1 HSKAurod nanoscale can be killed by 20 min after near infrared light irradiation. The death rate almost reached 100%., which indicates that the combination of physical sterilization and chemical sterilization can produce synergistic effect of bactericidal, effectively reduce the dosage of antibacterials, shorten the time of photothermal treatment, reduce the biological tissue damage caused by physical sterilization and.HSKAurod nanoscale, which has the potential to replace the traditional germicide, which is applied to clinical sterilization. The fourth chapter of the thesis designs and synthesizes the bimetallic shell shell gold silver nanorod (Au-Ag-Au nanorods) as the photothermal bactericidal material of the near infrared light zone,.Au-Ag-Au nanorods outer layer gold shell which can be ablated in the near infrared light to expose the silver shell in the middle, so as to realize the controllable release of the antibacterial silver shell /Ag+. This combination of photothermal sterilization of the outer layer gold shell and the controllable release of /Ag+ in the intermediate silver shell gives the excellent bactericidal performance of Au-Ag-Au nanorods. The bactericidal and bactericidal mechanism of the bimetallic shell shell nanorods are studied by using the Escherichia coli E. coli 0157:H7 as a template, and the shell gold under low power near infrared laser irradiation. The pAu-Ag-Au nanorods (44 C) shows the photothermal conversion performance superior to the gold silver nanorods (Au-Ag nanorods, 39 C). At the same time, the nuclear shell shell structure of the bimetal nanorods has a better chemical stability than the Au-Ag nanorods, and the absorption spectrum of Au-Ag-Au nanorods is stable in 16 days, and the absorbance does not change the Au-Ag-Au Na of.10 micron gmL-1. Norods can make the temperature of the surrounding solution reach 44 centigrade by irradiation of 10 min near infrared light, and the killing rate of E. coli 0157:H7 of Escherichia coli to 100%. bimetallic core and shell Au-Ag-Au nanorods for sterilization at 20 min near infrared light, which successfully avoids the use of broad-spectrum antibiotics, reduces the amount of material and improves the sterilization efficiency. At the same time, the use of low power near infrared light reduces the damage to biological tissue. The above properties make the bimetallic shell shell Au-Ag-Au nanorods a new kind of nano photothermal conversion material for biomedical research in vivo. The fifth chapter of the thesis is first combined with the one step method to the magnetic rGO-Fe3O4-PEI nanometers with positive electricity. Materials, and a large number of bimetallic core shell shell Au-Ag-Au nanorods loaded on the reduced graphene oxide film layer, and the rGO-Fe3O4-Au-Ag-Au nanocomposites obtained are used as near infrared photothermal materials for the capture, separation and killing of bacteria. The nano composite material to the bacteria is studied with the Escherichia coli E. coli O157:H7 as the target strain. The capture ability, magnetic separation, photothermal conversion efficiency and the assembly of.RGO-Fe3O4 magnetic materials make rGO-Fe3O4-Au-Ag-Au nanocomposites able to identify and capture bacteria at the same time of near infrared photothermal sterilization. The rGO-Fe3O4-Au-Ag-Au of O30 mu gmL-1 from the water samples is 10 mmin under the action of the magnetic field. Within 100%, the E. coli O157:H7 with a concentration of 1 * 108 CFU mL-1 was identified and the magnetic separation from the solution was removed from the solution to remove the.RGO-Fe3O4 itself with a certain photothermal conversion performance, plus the excellent thermal conductivity of the graphene material, and the photothermal transfer efficiency of the nanocomposites was effectively improved after the assembly, and the rGO-Fe3O4-Au-Ag-Au of 25 mu g mL-1 was found. The near infrared radiation of 10 min can increase the temperature of the surrounding solution and increase the bactericidal effect after the.Au-Ag-Au nanorods of the magnetic material rGO-Fe3O4 is assembled by the magnetic material rGO-Fe3O4. The 30 mu g mL-1 nano composite material can achieve 100% bactericidal effect after the magnetic separation, and the near infrared light is irradiated by 20 min. The nano composite material rGO-Fe3O4-Au-Ag-Au can be obtained. It is effective to combine the magnetic separation with the photothermal sterilization to improve the bactericidal efficiency and reduce the amount of the noble metal nanorods, but can also separate the bacteria from the water samples. The operation of the whole bacteria capture separation and inactivation process is simple and feasible.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.1

【參考文獻(xiàn)】

相關(guān)期刊論文 前2條

1 ;Au nanostructures:an emerging prospect in cancer theranostics[J];Science China(Life Sciences);2012年10期

2 張立佩;胡博;王建華;;量子點(diǎn)熒光探針檢測(cè)抗壞血酸[J];高等學(xué);瘜W(xué)學(xué)報(bào);2011年03期

,

本文編號(hào):1959687

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1959687.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶5561b***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com