水泥基吸波涂層的設(shè)計(jì)與研究
本文選題:水泥基吸波涂層 + MnO_2/活性炭復(fù)合吸波劑 ; 參考:《沈陽(yáng)理工大學(xué)》2017年碩士論文
【摘要】:隨著人類科技的不斷進(jìn)步,電磁污染已成為全球第四污染,威脅到人類生存。若能使數(shù)量眾多的建筑物具備電磁波吸收能力,必然能有效解決電磁污染問(wèn)題。本文采用氮吸附法、壓汞法、SEM微觀掃描研究了蒸餾水、稀鹽酸、氫氧化鈉溶液預(yù)處理對(duì)活性炭性能的影響,然后利用活性炭吸附性能制備了MnO_2/活性炭復(fù)合吸波劑,在此基礎(chǔ)上,制備了水泥基吸波涂層,并研究了吸波涂層的拉伸粘結(jié)強(qiáng)度、耐水性、耐磨性以及吸波性能。采用沉淀法,利用活性炭的吸附性,以高錳酸鉀、四水乙酸錳為原料,制備了MnO_2/活性炭復(fù)合吸波材料。研究了預(yù)處理方法對(duì)活性炭孔結(jié)構(gòu),微觀形貌,高錳酸鉀吸附量的影響。結(jié)果表明,用稀鹽酸預(yù)處理活性炭的平均粒徑明顯減小。酸洗有利于打開(kāi)活性炭微孔,提高其孔隙率,活性炭的BET比表面積增大15.7%;氫氧化鈉溶液對(duì)活性炭有刻蝕作用,可以增大活性炭孔隙率和平均粒徑。用稀鹽酸酸洗之后再用氫氧化鈉溶液堿洗的活性炭對(duì)高錳酸鉀的吸附量最大,比未預(yù)處理的活性炭增加14.5%。采用在吸波涂層中摻加橡膠顆粒的方法緩解涂層開(kāi)裂問(wèn)題,研究了涂層拉伸粘結(jié)強(qiáng)度、耐磨性及耐水性能。研究結(jié)果表明,橡膠顆粒會(huì)降低涂層拉伸粘結(jié)強(qiáng)度,但在涂層拉伸粘結(jié)強(qiáng)度大于1.5MPa的前提下,能提高涂層的耐磨性。復(fù)合吸波劑能吸收部分水,不利于水泥水化。涂層14d拉伸粘結(jié)強(qiáng)度最大達(dá)到2.4MPa,耐磨性最大時(shí),磨坑弦長(zhǎng)最小為16.3mm,涂層耐水性優(yōu)良,僅少數(shù)發(fā)生變形,脫落,開(kāi)裂的現(xiàn)象。采用弓形法測(cè)量了水泥基吸波涂層的反射率,研究了水泥基吸波涂層的吸波性能。研究結(jié)果表明,制備的水泥基吸波涂層最小反射率為-15.38dB,反射率低于-10dB的頻帶帶寬達(dá)8.8GHz,反射率低于-5dB的頻帶帶寬達(dá)14GHz,占測(cè)試頻段的90%,具有實(shí)際使用意義。吸波性能最優(yōu)的吸波涂層各組分的質(zhì)量比為水泥:錳鋅鐵氧體:MnO_2/活性炭復(fù)合吸波劑:橡膠:水=7.5:7.5:1:1:5.5。
[Abstract]:With the continuous progress of human science and technology, electromagnetic pollution has become the fourth pollution in the world, threatening human survival. If a large number of buildings can absorb electromagnetic wave, the problem of electromagnetic pollution will be solved effectively. In this paper, the effects of pretreatment of distilled water, dilute hydrochloric acid and sodium hydroxide solution on the properties of activated carbon were studied by means of nitrogen adsorption method and mercury entrainment method. Then, the composite wave absorbent of MnO_2/ activated carbon was prepared by using the adsorption property of activated carbon. The cement-based absorbing coating was prepared, and the tensile bond strength, water resistance, wear resistance and wave absorbing property of the coating were studied. The composite wave absorbing material of MnO_2/ activated carbon was prepared by precipitation method and using potassium permanganate and manganese acetate tetrahydrate as raw materials. The effects of pretreatment methods on pore structure, micromorphology and adsorption capacity of potassium permanganate were studied. The results showed that the average particle size of activated carbon pretreated with dilute hydrochloric acid was obviously reduced. Acid pickling can open the micropores of activated carbon and increase the porosity of activated carbon. The BET surface area of activated carbon increases by 15.7.The sodium hydroxide solution has etching effect on activated carbon, which can increase the porosity and average particle size of activated carbon. The adsorption of potassium permanganate on activated carbon washed with sodium hydroxide solution after acid washing with dilute hydrochloric acid was the largest, which increased 14.5g than that of unpretreated activated carbon. The crack of the coating was alleviated by adding rubber particles into the absorbing coating. The tensile bond strength, wear resistance and water resistance of the coating were studied. The results show that the rubber particles can reduce the tensile bond strength of the coating, but the wear resistance of the coating can be improved when the tensile bond strength of the coating is greater than that of 1.5MPa. The composite absorbent can absorb some water, which is not good for cement hydration. The maximum tensile bond strength of the coating for 14 days is 2.4 MPA, and the minimum chord length of the grinding pit is 16.3 mm when the wear resistance is the greatest. The coating has good water resistance, only a few of the phenomena of deformation, shedding and cracking occur. The reflectivity of cement based absorbing coating was measured by bow method, and the absorbing property of cement based absorbing coating was studied. The results show that the minimum reflectivity of the cement-based absorbing coating is -15.38 dB, the bandwidth of the band less than -10 dB is 8.8 GHz, and the band bandwidth of less than -5 dB is 14 GHz, accounting for 90 dB of the test band, which is of practical use. The mass ratio of each component of the best absorbing coating is cement: MnZn ferrite: MNO _ 2 / activated carbon composite absorbent: rubber: water 7.5: 7.5: 1: 1: 5.5.
【學(xué)位授予單位】:沈陽(yáng)理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB34
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張秀芝;張國(guó)棟;周志亮;周宗輝;程新;;雙層水泥基吸波材料制備及性能研究[J];功能材料;2016年06期
2 李寶毅;張換換;;水泥基復(fù)合吸波材料的性能研究[J];安全與電磁兼容;2016年02期
3 高翔;孫亞飛;耿飛;徐少云;;新型水泥基吸波材料的性能分析研究[J];混凝土與水泥制品;2015年04期
4 雷偉;劉永生;徐娟;杜文龍;司曉東;郭保智;高nI;彭麟;;錳鋅鐵氧體的制備研究進(jìn)展[J];功能材料與器件學(xué)報(bào);2014年06期
5 李海紅;李紅艷;;預(yù)處理方法對(duì)活性炭結(jié)構(gòu)及吸附性能的影響[J];粉末冶金材料科學(xué)與工程;2014年04期
6 安玉良;李杰;袁霞;隋宏超;;活性炭負(fù)載鎳鋅鐵氧體的制備及電磁性能研究[J];功能材料;2014年S1期
7 黃嘯谷;劉益?zhèn)?朱洪立;王麗熙;張其土;;固相法制備錳鋅鐵氧體及其吸波性能研究[J];安全與電磁兼容;2014年02期
8 姜志旺;崔占豪;張紅霞;;電磁污染:看不見(jiàn)的危害[J];生態(tài)經(jīng)濟(jì);2014年04期
9 高海濤;王建江;趙志寧;蔡旭東;侯永伸;;鐵氧體吸波材料吸波性能影響因素研究進(jìn)展[J];磁性材料及器件;2014年01期
10 嚴(yán)超;吳傳海;丁慶軍;;摻膨脹珍珠巖水泥基復(fù)合吸波材料的研究[J];公路;2013年03期
相關(guān)博士學(xué)位論文 前2條
1 李寶毅;水泥基平板吸波材料的制備與性能研究[D];大連理工大學(xué);2011年
2 張瑜;泡沫鋁復(fù)合材料吸波性能研究[D];東北大學(xué);2010年
相關(guān)碩士學(xué)位論文 前8條
1 解帥;炭黑為吸波劑石膏板和礦棉板電磁波吸收性能研究[D];河北工業(yè)大學(xué);2015年
2 焦亞軍;結(jié)構(gòu)吸波復(fù)合材料及其力學(xué)性能的研究[D];武漢理工大學(xué);2015年
3 汪龍;環(huán)氧基吸波涂層的結(jié)構(gòu)設(shè)計(jì)與吸波性能研究[D];大連理工大學(xué);2012年
4 曹燕歸;X帶吸波涂層的制備[D];海南大學(xué);2011年
5 嚴(yán)超;阻抗?jié)u變型水泥基復(fù)合吸波材料的研究[D];武漢理工大學(xué);2011年
6 閆春娟;多層納米吸波涂層的阻抗匹配及優(yōu)化設(shè)計(jì)[D];南京理工大學(xué);2007年
7 崔曉冬;平板吸波材料結(jié)構(gòu)設(shè)計(jì)及吸波性能研究[D];大連理工大學(xué);2006年
8 王t,
本文編號(hào):1955546
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1955546.html