稀土核殼結(jié)構(gòu)納米顆粒的制備及發(fā)光性能研究
本文選題:核殼 + 稀土納米顆粒。 參考:《貴州大學(xué)》2015年碩士論文
【摘要】:本文以多元醇為溶劑,稀土氯化物為原料,NaOH為沉淀劑,合成出了稀土離子摻雜的球形的Gd2O3納米核,然后利用正硅酸乙酯(TEOS)和3-氨丙基三乙氧基硅烷(APTES)水解縮聚的作用在納米核表面包裹上聚硅氧烷殼層形成Gd2O3:Tb3+/SiOx,殼層的包覆能夠提高納米顆粒的穩(wěn)定性,并為下一步與生物分子連接,實(shí)現(xiàn)生物醫(yī)藥方面的應(yīng)用提供了可能。為制備出發(fā)光性能優(yōu)良的核殼結(jié)構(gòu)納米材料,首先研究了兩種稀土摻雜離子(Tb3+和Eu3+)對(duì)Gd2O3納米核發(fā)光性能的影響,隨后研究了不同包覆比例(包覆試劑中的Si與前驅(qū)體中Gd的摩爾比例)以及不同分子量PEG溶劑對(duì)Gd2O3:Tb3+/SiOx發(fā)光性能的影響。利用馬爾文激光粒度儀、TEM、SEM、熒光光譜等手段對(duì)樣品的尺寸、微觀形貌和發(fā)光性能進(jìn)行表征,對(duì)影響納米顆粒尺寸及發(fā)光性能的參數(shù)進(jìn)行了優(yōu)化。實(shí)驗(yàn)結(jié)果表明:(1)Eu3+和Tb3+共摻雜Gd2O3的發(fā)射光譜有545nm和612nm兩個(gè)較強(qiáng)的發(fā)射峰,固定5%Tb3+摻雜,隨著Eu3+摻雜比例的升高,兩發(fā)射峰強(qiáng)度在Eu3+摻雜2%時(shí)達(dá)到最大,超過(guò)2%后開(kāi)始下降,表明存在Eu3+→Tb3+的能量傳遞且Eu3+的猝滅濃度為2%;固定2%Eu3+摻雜,隨著Tb3+摻雜比例的升高,545nm的發(fā)射峰強(qiáng)度在5%Tb3+摻雜時(shí)達(dá)到最大,超過(guò)5%后發(fā)光又開(kāi)始減弱,分析是發(fā)生了Tb3+的濃度猝滅,而隨著Tb3+摻雜濃度的上升,612nm處發(fā)射峰強(qiáng)度逐漸降低,驗(yàn)證了產(chǎn)物中Eu3+→Tb3+的能量傳遞。綜合看來(lái)Gd2O3:5%Tb3+,2%Eu3+的發(fā)光性能最好。(2)包覆比例越大,納米顆粒的尺寸及殼層的厚度越大。隨著包覆比例的升高,發(fā)光強(qiáng)度先略微下降然后上升,至包覆比例為4:1時(shí)發(fā)光強(qiáng)度達(dá)到最大,超過(guò)4:1后發(fā)光又開(kāi)始減弱。包覆比例為4:1時(shí)Gd2O3:Tb3+/SiOx的發(fā)光性能最佳。(3)不同分子量PEG溶劑中合成的Gd2O3∶Tb3+/SiOx尺寸區(qū)別較大,PEG200溶劑最大程度的促進(jìn)了納米顆粒的長(zhǎng)大。隨著Gd2O3∶Tb3+/SiOx尺寸的增大,激發(fā)和發(fā)射強(qiáng)度均而增強(qiáng)。
[Abstract]:In this paper, the spherical Gd2O3 nanoparticles doped with rare earth ions were synthesized by using polyol as solvent and rare earth chloride as raw material, NaOH as precipitant. Then the polysiloxane shell was formed by the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) and 3-aminopropyl triethoxy silane (APTES) on the surface of the nanocrystalline nucleus, and the coating of the shell could improve the stability of the nanoparticles. It also provides the possibility for the next step to connect with biomolecules and realize the application of biomedicine. In order to prepare core-shell nanomaterials with excellent luminescence properties, the effects of two rare earth doped ions (Tb3 and Eu3) on the photoluminescence properties of Gd2O3 nanostructures were studied. The effects of different coating ratios (molar ratio of Si in the coating reagent to Gd in the precursor) and different molecular weight PEG solvents on the luminescence properties of Gd2O3:Tb3 / SiOx were studied. The size, micromorphology and luminescence properties of the samples were characterized by Ma Erwen laser particle size analyzer (TEM-SEM) and fluorescence spectroscopy. The parameters affecting the size and luminescence properties of the nanoparticles were optimized. The experimental results show that there are two strong emission peaks of 545nm and 612nm in the emission spectra of Gd2O3 doped with 545nm and Tb3. The intensity of the two emission peaks increases with the increase of the ratio of Eu3 doping, and the intensity of the two emission peaks reaches the maximum when Eu3 doping is 2%, and decreases after more than 2%. The results show that the energy transfer of Eu3 Tb3 exists and the quenching concentration of Eu3 is 2. The intensity of emission peak at 545nm of fixed 2%Eu3 doping reaches the maximum with the increase of Tb3 doping ratio, and the emission intensity decreases again after more than 5% of Tb3 doping. The concentration quenching of Tb3 occurs and the emission peak intensity decreases with the increase of Tb3 doping concentration at 612nm, which verifies the energy transfer of Eu3 Tb3 in the product. It is shown that the larger the ratio of luminescent properties of Gd2O3:5%Tb3 ~ (2 +) and EU _ (2) is, the larger the size of nanoparticles and the thickness of shell are. With the increase of the coating ratio, the luminescence intensity decreased slightly and then increased. The luminescence intensity reached its maximum at 4:1, and began to weaken after 4:1. When the coating ratio is 4:1, the luminescence property of Gd2O3:Tb3 / SiOx is the best. 3) the Gd2O3:Tb3 / SiOx synthesized in PEG solvent with different molecular weight has a large difference in size. The solvent PEG200 can promote the growth of nanoparticles to the greatest extent. The excitation and emission intensities increase with the increase of Gd2O3:Tb3 / SiOx size.
【學(xué)位授予單位】:貴州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:O482.31;TB383.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李丹,呂少哲,張繼森,劉俊業(yè),王海宇,孫聆東,黃世華;Eu~(3+):Y_2O_3納米微粒的尺寸效應(yīng)和表面態(tài)效應(yīng)的研究[J];發(fā)光學(xué)報(bào);2000年02期
2 牛雙雙;由芳田;時(shí)秋峰;謝蒂旎;彭洪尚;黃世華;;不同殼層厚度的LaF_3∶Eu~(3+)/LaF_3核殼結(jié)構(gòu)納米顆粒制備及發(fā)光性質(zhì)[J];發(fā)光學(xué)報(bào);2014年03期
3 李艷紅;張星傲;馬晶;;GdF_3∶Eu~(3+)和NaGdF_4∶Eu~(3+)發(fā)光粉的可控合成與發(fā)光性質(zhì)[J];硅酸鹽學(xué)報(bào);2014年10期
4 黃以萬(wàn);肖兵;;稀土發(fā)光材料的研究與應(yīng)用展望[J];礦產(chǎn)保護(hù)與利用;2008年06期
5 李三清;劉耀馳;于金剛;;多壁碳納米管-聚乙二醇復(fù)合材料緩釋氧氟沙星[J];科技導(dǎo)報(bào);2013年09期
6 呂強(qiáng);祖國(guó)美;吳英俊;曹勇;;SiO_2包覆殼層對(duì)Y_2O_3:Yb~(3+),Ho~(3+)納米粒子上轉(zhuǎn)換發(fā)光性能的影響[J];牡丹江醫(yī)學(xué)院學(xué)報(bào);2013年02期
7 吳伯岳;嚴(yán)秀平;;稀土發(fā)光材料在熒光成像中的應(yīng)用[J];生物物理學(xué)報(bào);2011年04期
8 樂(lè)天;曾慶光;張梅;沙為超;羅堅(jiān)義;龍擁兵;;Tb~(3+)-Eu~(3+)共摻雜2ZnO·2.2B_2O_3·3H_2O的制備和發(fā)光性能[J];人工晶體學(xué)報(bào);2012年06期
9 李鋒;郭興家;王猛;徐淑坤;孫思玲;;GdPO_4∶Eu~(3+)和GdPO_4∶Ce~(3+),Tb~(3+)納米晶多元醇法的合成與表征[J];無(wú)機(jī)化學(xué)學(xué)報(bào);2009年06期
10 彭智偉;王玲玲;劉晃清;黃維清;鄒炳鎖;;Gd_2O_3:Eu~(3+)納米晶的燃燒合成及光致發(fā)光性質(zhì)[J];物理學(xué)報(bào);2007年02期
,本文編號(hào):1924886
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1924886.html