天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 材料論文 >

納米流體沸騰換熱實(shí)驗(yàn)研究

發(fā)布時(shí)間:2018-05-22 16:50

  本文選題:納米流體 + 沸騰換熱系數(shù); 參考:《江蘇科技大學(xué)》2017年碩士論文


【摘要】:近年來,電子器件體積日趨小型化和集成化,單位面積的熱量集聚嚴(yán)重,由此引起的散熱問題日益嚴(yán)俊,如何實(shí)現(xiàn)熱量的高效傳遞以保證大功率電器的安全運(yùn)行,一直困擾著相關(guān)領(lǐng)域的研究者。關(guān)于納米流體汽液兩相流強(qiáng)化傳熱方面的研究結(jié)論,在當(dāng)今傳熱學(xué)領(lǐng)域仍存在較大爭議;且由于它在實(shí)際應(yīng)用中需求較大,促使各國相關(guān)領(lǐng)域研究者對(duì)其進(jìn)行實(shí)驗(yàn)研究和理論分析,但大部分僅局限于理論研究方面,實(shí)驗(yàn)研究相對(duì)較少,因而本文希望通過實(shí)驗(yàn)研究的方法,探討影響納米流體沸騰換熱性能的實(shí)驗(yàn)機(jī)理,為實(shí)現(xiàn)更高效率的強(qiáng)化傳熱作鋪墊。本文在綜述了目前國內(nèi)外納米流體沸騰換熱的研究及其進(jìn)展情況的基礎(chǔ)上,對(duì)納米流體進(jìn)行了沸騰換熱實(shí)驗(yàn)研究,探討其中蘊(yùn)含的傳熱機(jī)理,為進(jìn)一步強(qiáng)化沸騰換熱提供參考依據(jù)。首先采用兩步法制備了不同組分的納米流體,對(duì)其導(dǎo)熱系數(shù)等物性參數(shù)的影響因素進(jìn)行了理論分析。然后,精心設(shè)計(jì)并搭建了納米流體沸騰換熱的實(shí)驗(yàn)裝置,并結(jié)合已有的且研究比較成熟的水的沸騰換熱曲線,驗(yàn)證了實(shí)驗(yàn)裝置的可靠性及可重復(fù)性。進(jìn)而介紹了具體的實(shí)驗(yàn)方案及實(shí)驗(yàn)方法,對(duì)不同納米流體的沸騰換熱特性進(jìn)行實(shí)驗(yàn)研究,利用高速攝像機(jī)對(duì)沸騰換熱過程進(jìn)行了可視化觀測,記錄沸騰蒸發(fā)腔內(nèi)氣泡變化規(guī)律及相關(guān)試驗(yàn)數(shù)據(jù),并對(duì)沸騰換熱前后加熱銅柱的上壁面情況進(jìn)行了SEM表征對(duì)比。通過實(shí)驗(yàn)數(shù)據(jù)、氣泡圖像、壁面形態(tài)等信息的整理,對(duì)比分析不同基液組分、納米顆粒濃度、納米顆粒粒徑、納米顆粒種類在不同系統(tǒng)運(yùn)行壓力下的沸騰換熱特性的差異,進(jìn)而分析以上各因素對(duì)納米流體沸騰換熱性能的影響及其作用機(jī)理。本文實(shí)驗(yàn)研究結(jié)果表明:(1)在低濃度范圍內(nèi),納米顆粒質(zhì)量濃度越大,越有利于納米流體沸騰換熱性能的提高。納米顆粒平均粒徑為30nm,質(zhì)量濃度分別為0.001%、0.005%、0.01%的水-氧化鋁納米流體的沸騰換熱性能從左到右依次變大。(2)納米流體的沸騰換熱性能與納米顆粒種類有關(guān),在其他條件相同的情況下,納米顆粒的物性,諸如導(dǎo)熱系數(shù)、比熱、密度、粘度等,均會(huì)影響納米流體的沸騰換熱性能。納米顆粒平均粒徑為30nm、質(zhì)量濃度為0.005%的水-氧化鋁納米流體的沸騰換熱性能比水-二氧化硅更好。(3)對(duì)于制備納米流體的基液,也會(huì)影響納米流體的沸騰換熱性能。納米顆粒平均粒徑為30nm、質(zhì)量濃度為0.005%的氧化鋁納米流體,混合基液中乙二醇的質(zhì)量分?jǐn)?shù)越低,納米流體的沸騰換熱性能越好。(4)在試驗(yàn)范圍內(nèi),納米顆粒的平均粒徑越小,納米流體的沸騰換熱性能越好。質(zhì)量濃度均為0.005%,平均粒徑為30nm的水-氧化鋁納米流體的沸騰換熱性能優(yōu)于平均粒徑為50nm的水-氧化鋁納米流體。(5)試驗(yàn)系統(tǒng)的工作壓力對(duì)納米流體的沸騰換熱性能有重要影響。實(shí)驗(yàn)結(jié)果表明,與高壓條件相比,納米流體在低壓條件下的沸騰換熱性能更好。
[Abstract]:In recent years, the volume of electronic devices is becoming smaller and more integrated, the heat concentration per unit area is serious, and the heat dissipation problem is becoming more and more serious. How to achieve efficient heat transfer to ensure the safe operation of high-power electrical appliances, Researchers have been puzzling researchers in related fields. The conclusion of the research on the enhancement of heat transfer in the vapor liquid two phase flow of nanoscale fluid is still controversial in the field of heat transfer at present, and because of its great demand in practical application, However, most of them are confined to the theoretical research, and the experimental research is relatively few. Therefore, this paper hopes to adopt the method of experimental research. The experimental mechanism affecting the boiling heat transfer performance of nanofluids is discussed in order to pave the way for a more efficient enhancement of heat transfer. In this paper, based on the review of the research and progress of boiling heat transfer of nanofluids at home and abroad, the boiling heat transfer experiments of nanofluids are carried out, and the heat transfer mechanism is discussed. It provides reference for further enhancement of boiling heat transfer. In this paper, two step method was used to prepare different components of nanoscale fluids, and the influence factors of physical parameters such as thermal conductivity were analyzed theoretically. Then, the experimental apparatus of boiling heat transfer of nano-fluid is designed and built carefully, and the reliability and repeatability of the experimental device are verified by combining the existing boiling heat transfer curves of water with more mature research. Then the specific experimental scheme and experimental method are introduced. The boiling heat transfer characteristics of different nano-fluids are experimentally studied. The visualization observation of boiling heat transfer process is carried out by using high-speed video camera. The change of bubble in boiling evaporation chamber and related experimental data were recorded, and the SEM characterization of the upper wall of heated copper column before and after boiling heat transfer was carried out. Based on the experimental data, bubble images, wall morphology and other information, the differences of boiling heat transfer characteristics of different base liquid components, concentration of nanoparticles, particle size, and kinds of nanoparticles under different operating pressures were analyzed. The effect of these factors on the boiling heat transfer of nano-fluid and its mechanism are analyzed. The experimental results show that the higher the mass concentration of nanocrystalline particles is, the better the boiling heat transfer property of nanofluids is. The boiling heat transfer properties of water-alumina nanofluids with an average particle size of 30 nm and a mass concentration of 0.001% increase from left to right.) the boiling heat transfer properties of nano-fluids are related to the type of nanoparticles, and the other conditions are the same. The physical properties of nanoparticles, such as thermal conductivity, specific heat, density, viscosity and so on, will affect the boiling heat transfer properties of nano-fluids. The boiling heat transfer property of water-alumina nanofluid with 0.005% mass concentration is better than that of water-silica nanofluid. The average particle size is 30 nm and the concentration is 0.005%. The lower the mass fraction of ethylene glycol in the mixture solution, the better the boiling heat transfer property of nano-fluid. The better the boiling heat transfer of nanometer fluid. The boiling heat transfer of water-alumina nano-fluid with average diameter of 30nm is better than that of water-alumina nano-fluid with average diameter of 50nm. The working pressure of the system has an important effect on the boiling heat transfer of nano-fluid. The experimental results show that the boiling heat transfer performance of nanofluids at low pressure is better than that under high pressure.
【學(xué)位授予單位】:江蘇科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB383.1;TK124

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李科;薛淑文;李義科;;一個(gè)水基SiO_2納米流體核態(tài)池沸騰數(shù)學(xué)模型[J];熱科學(xué)與技術(shù);2017年01期

2 許世民;郎中敏;王亞雄;梁倩卿;赫文秀;;羧基化碳納米管/水納米流體核沸騰傳熱研究[J];工程熱物理學(xué)報(bào);2017年02期

3 姚壽廣;董招生;;納米流體沸騰傳熱研究進(jìn)展[J];江蘇科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2017年01期

4 周建陽;羅小平;李海燕;郭峰;鄧聰;謝鳴宇;;納米粒子濃度對(duì)納米流體流動(dòng)沸騰傳熱及壓降影響綜合評(píng)價(jià)[J];化工進(jìn)展;2017年01期

5 王洪亮;夏虹;張會(huì)勇;李業(yè);孫吉良;;納米流體對(duì)臨界熱流密度強(qiáng)化影響池沸騰實(shí)驗(yàn)研究[J];應(yīng)用科技;2017年01期

6 李呼昂;梅勇;張波濤;龔圣捷;;石墨納米溶液的沸騰傳熱特性研究[J];熱能動(dòng)力工程;2016年11期

7 王麗麗;李奇賀;趙孝保;朱琳;張漢;魯潔;余浩;;納米Cu/R11池沸騰可視化實(shí)驗(yàn)[J];南京師范大學(xué)學(xué)報(bào)(工程技術(shù)版);2016年02期

8 吳克;趙建福;李會(huì)雄;;微重力池沸騰過程中的氣泡熱動(dòng)力學(xué)特征研究[J];力學(xué)與實(shí)踐;2016年02期

9 胡嵩霜;張磊;徐志成;宮清濤;靳志強(qiáng);張路;趙濉;;芐基取代甜菜堿對(duì)聚四氟乙烯表面潤濕性的影響[J];物理化學(xué)學(xué)報(bào);2015年10期

10 羅小平;涂華營;鄧君;;鋁基微通道內(nèi)納米流體飽和沸騰及可視化研究[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年09期

相關(guān)會(huì)議論文 前1條

1 梅燕;韓業(yè)斌;聶祚仁;;納米SiO_2粉體的制備及SiO_2懸浮液的分散性研究[A];2004年中國材料研討會(huì)論文摘要集[C];2004年

相關(guān)博士學(xué)位論文 前4條

1 孫濤;加熱表面上氣泡傳熱及動(dòng)力學(xué)特性的LBM模擬[D];大連理工大學(xué);2013年

2 李金旺;環(huán)路熱管多孔結(jié)構(gòu)的毛細(xì)抽吸性能及其制備與優(yōu)化[D];山東大學(xué);2011年

3 呂倫春;納米流體強(qiáng)化毛細(xì)泵回路(CPL)換熱特性實(shí)驗(yàn)研究[D];上海交通大學(xué);2009年

4 李強(qiáng);納米流體強(qiáng)化傳熱機(jī)理研究[D];南京理工大學(xué);2004年

相關(guān)碩士學(xué)位論文 前5條

1 劉冉;納米流體穩(wěn)定性和導(dǎo)熱系數(shù)測試及其流動(dòng)與換熱特性研究[D];北京工業(yè)大學(xué);2016年

2 李浩然;ZnO納米流體傳熱特性實(shí)驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2015年

3 周文武;粘彈性流體基納米流體導(dǎo)熱系數(shù)與粘度研究[D];哈爾濱工業(yè)大學(xué);2012年

4 毛欣欣;脈動(dòng)熱管傳熱極限的熱性能實(shí)驗(yàn)及可視化實(shí)驗(yàn)研究[D];天津大學(xué);2012年

5 謝寧;納米流體沸騰換熱研究[D];浙江大學(xué);2010年

,

本文編號(hào):1922870

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1922870.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶70f7a***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com