天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 材料論文 >

聚偏氟乙烯基導(dǎo)熱復(fù)合材料的制備及表征

發(fā)布時間:2018-05-22 12:16

  本文選題:PVDF復(fù)合材料 + 碳納米管; 參考:《西南交通大學(xué)》2015年碩士論文


【摘要】:聚合物因其具有優(yōu)良的加工性能、耐化學(xué)腐蝕、成本低廉等特點,在電子封裝等領(lǐng)域有廣泛的應(yīng)用。隨著電子領(lǐng)域與封裝技術(shù)的飛速發(fā)展,電子產(chǎn)品的體積成千萬倍地縮小,而電子產(chǎn)品工作速度越來越過,此時電子設(shè)備發(fā)熱現(xiàn)象愈發(fā)明顯,使得電子產(chǎn)品的運行效率下降、死機甚至?xí)l(fā)火災(zāi)等危害。聚合物導(dǎo)熱性能較差,不足以滿足工業(yè)生產(chǎn)對散熱性能的需求,而選用高導(dǎo)熱性能填料對聚合物材料進行填充改性已經(jīng)成為工業(yè)常用的提高材料導(dǎo)熱性能的手段。因此,研究制備高導(dǎo)熱性能高分子材料具有十分重要的意義。本文針對聚偏氟乙烯(Polyvinylidene fluoride, PVDF)基導(dǎo)熱復(fù)合材料中界面熱阻、導(dǎo)熱填料網(wǎng)絡(luò)、極性晶體等對復(fù)合材料導(dǎo)熱性能的影響規(guī)律及其作用機制開展研究工作,旨在掌握改善PVDF復(fù)合材料導(dǎo)熱性能的方法和技術(shù),闡述其機理,以期為具有高導(dǎo)熱系數(shù)的PVDF復(fù)合材料的開發(fā)與應(yīng)用提供理論支撐和技術(shù)指導(dǎo)。主要研究成果如下:(1)首先利用聚乙烯吡咯烷酮(Polyvinyl pyrrolidone, PV P)對碳納米管(Carbon nanotubes, CNTs)物理包覆制備CNTs@PVP,再通過熔融共混法制備復(fù)合材料PVDF/CNTs和PVDF/CNTs@PVP。通過對復(fù)合材料導(dǎo)熱性能、結(jié)晶行為、流變行為、微觀形貌的表征,研究PVP對CNTs的分散以及界面熱阻的影響。導(dǎo)熱系數(shù)測試結(jié)果表明,當(dāng)CNTs、PVP含量分別為10wt%、1wt%時,復(fù)合材料的導(dǎo)熱系數(shù)升高至0.63W/mK,達到PVDF導(dǎo)熱系數(shù)的3倍之多;通過結(jié)晶行為研究發(fā)現(xiàn)PVP不會引起PVDF晶型的變化;形貌表征及流變行為說明PVP的引入大幅地改善CNTs的分散并構(gòu)建更致密的導(dǎo)熱網(wǎng)絡(luò);通過紅外分析發(fā)現(xiàn)PVP與PVDF間存在氫鍵作用。綜合上述分析表明,CNTs致密的網(wǎng)絡(luò)結(jié)構(gòu)及PVDF與CNTs間界面相互作用的增強是PVDF/CNTs@PVP復(fù)合材料導(dǎo)熱性能提高的主要原因。(2)通過溶液共混法將氧化石墨烯(Graphene oxide, GO)引入到復(fù)合材料PVDF/CNTs中,制備PVDF/CNTs/GO復(fù)合材料。通過形貌表征、流變行為研究發(fā)現(xiàn),GO促進CNTs的分散,并與CNTs形成致密的三維填料網(wǎng)絡(luò)結(jié)構(gòu);通過導(dǎo)熱性能測試及理論模擬計算發(fā)現(xiàn),GO與CNTs所構(gòu)建三維導(dǎo)熱網(wǎng)絡(luò)結(jié)構(gòu)是導(dǎo)熱性能提高的主要原因。此外,結(jié)晶行為研究表明,GO誘導(dǎo)PVDF生成大量極性的y晶體。這意味著GO的引入不但可以降低PVDF/CNTs導(dǎo)熱復(fù)合材料的生產(chǎn)成本,而且可使PVDF具有更多的潛在應(yīng)用價值。(3)將離子液體(Ionic liquid, IL)添加到PVDF中,制備共混物PVDF/IL。通過對PVDF結(jié)晶行為的研究發(fā)現(xiàn),IL誘導(dǎo)PVDF生成了β極性晶體,并且極性晶體相對含量隨IL含量增加而增加;導(dǎo)熱測試結(jié)果表明,極性晶體的生成有利于PVDF導(dǎo)熱性能的提高;初步探索了極性晶體對復(fù)合材料導(dǎo)熱性能的影響,為進一步改善聚合物導(dǎo)熱性能提供了新的研究思路。
[Abstract]:Because of its excellent processing performance, chemical corrosion resistance and low cost, polymer has been widely used in electronic packaging and other fields. With the rapid development of electronic and packaging technology, the volume of electronic products is narrowing, and electronic products work faster and faster. At this time, the heating phenomenon of electronic equipment is becoming more and more obvious. The operation efficiency of the electronic products decreases and the dead machine may even cause the damage of the fire. The poor thermal conductivity of the polymer is not enough to meet the demand for the heat dissipation of the industrial production. And the use of high thermal conductivity filler to fill in the polymer material has become a commonly used means to improve the thermal conductivity of the materials. The preparation of high thermal conductivity polymer materials is of great significance. In this paper, the effect of thermal conductivity of the composite materials on the thermal conductivity of Polyvinylidene fluoride (PVDF) based thermal conductive composites, thermal conductive filler network, polar crystal and so on, is studied to improve the PVDF complex. The methods and techniques of thermal conductivity of the composite materials are described in order to provide theoretical support and technical guidance for the development and application of PVDF composites with high thermal conductivity. The main research results are as follows: (1) first, the physical package of carbon nanotubes (Carbon nanotubes, CNTs) with polyvinylpyrrolidone (Polyvinyl pyrrolidone, PV P) CNTs@PVP was prepared, and the composite material PVDF/CNTs and PVDF/CNTs@PVP. were prepared by melt blending. Through the characterization of thermal conductivity, crystallization behavior, rheological behavior and Micromorphology of the composites, the influence of PVP on the dispersion of CNTs and the thermal resistance of the interface was studied. The thermal conductivity test results showed that when CNTs, PVP content was 10wt%, 1wt%, composite. The thermal conductivity of the material is up to 0.63W/mK, up to 3 times of the PVDF thermal conductivity. Through the crystallization behavior study, it is found that PVP does not cause the change of the PVDF crystal. The morphology characterization and the rheological behavior indicate that the introduction of PVP greatly improves the dispersion of CNTs and constructs a more compact heat conduction network, and the existence of hydrogen between PVP and PVDF through the infrared analysis is found. The above analysis shows that the dense network structure of CNTs and the enhancement of the interface interaction between PVDF and CNTs are the main reasons for improving the thermal conductivity of PVDF/CNTs@PVP composites. (2) the oxidation Shi Moxi (Graphene oxide, GO) is introduced into the composite PVDF/CNTs by solution blending, and the PVDF/CNTs/GO composite material is prepared. The morphology characterization and rheological behavior study found that GO promotes the dispersion of CNTs and forms a compact three-dimensional packing network structure with CNTs. Through thermal conductivity testing and theoretical simulation, it is found that the three dimensional heat conduction network structure constructed by GO and CNTs is the main reason for the improvement of thermal conductivity. In addition, the crystallization behavior study shows that GO induces PVDF to produce a large amount of PVDF. Polar y crystal. This means that the introduction of GO can not only reduce the production cost of PVDF/CNTs thermal conductive composite, but also make PVDF have more potential application value. (3) adding the ionic liquid (Ionic liquid, IL) to PVDF, and preparing the blend PVDF/IL. through the study of the crystallization behavior of PVDF, the IL inducible PVDF generates beta polarity. The relative content of crystal increases with the increase of IL content, and the thermal conductivity test results show that the formation of polar crystals is beneficial to the improvement of the thermal conductivity of PVDF, and the effect of polar crystals on the thermal conductivity of the composites is preliminarily explored, which provides a new way to further improve the thermal conductivity of the polymer.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TB332

【參考文獻】

相關(guān)期刊論文 前5條

1 韓艷春;傅仁利;何洪;沈源;宋秀峰;;復(fù)合陶瓷顆粒/環(huán)氧模塑料的制備與性能[J];電子與封裝;2007年01期

2 李侃社,王琪;導(dǎo)熱高分子材料研究進展[J];功能材料;2002年02期

3 周文英;張亞婷;;本征型導(dǎo)熱高分子材料[J];合成樹脂及塑料;2010年02期

4 祝大同;;高散熱性覆銅板的性能、技術(shù)與應(yīng)用(上)——特殊性能CCL的發(fā)展綜述之一[J];印制電路信息;2008年05期

5 謝海瑞;;大功率LED散熱問題的探討[J];電子測試;2013年09期

,

本文編號:1922022

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1922022.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e9f17***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com