環(huán)氧樹脂基復(fù)合材料熱界面(TIM)的研究
本文選題:導(dǎo)熱絕緣材料 + 多尺度熱導(dǎo)率模型; 參考:《重慶大學(xué)》2015年碩士論文
【摘要】:大功率LED芯片在工作時產(chǎn)生的熱量,不能快速有效的散失掉,將會嚴(yán)重影響大功率LED的發(fā)光強(qiáng)度及使用壽命。隨著節(jié)能減排、發(fā)展低碳經(jīng)濟(jì)政策的推行,人們對于綠色照明光源的需求與日俱增,使得大功率LED在照明領(lǐng)域的應(yīng)用越來越廣泛,其散熱問題是固態(tài)照明領(lǐng)域必須攻克的一道難關(guān)。在大功率LED的多層結(jié)構(gòu)中,其層間粘接材料的低熱導(dǎo)率及界面處理情況成為改善其散熱問題的一個突破點(diǎn)。層間粘接材料需要具有較高的熱導(dǎo)率、粘接強(qiáng)度,較好的絕緣性能以及與被粘接材料相匹配的熱膨脹系數(shù),才能有效地改善大功率LED整體的散熱。本文在分析和總結(jié)絕緣導(dǎo)熱粘接材料發(fā)展現(xiàn)狀的基礎(chǔ)上,根據(jù)現(xiàn)有的研究,采用硅烷偶聯(lián)劑及水浴加熱法來改善導(dǎo)熱微粉及層間材料的微觀與宏觀兩種界面,制備了碳化硼/環(huán)氧樹脂、二氧化硅/環(huán)氧樹脂、氮化硼/環(huán)氧樹脂復(fù)合材料。并分別用OLYMPUS_BX53光學(xué)顯微鏡、SEM、FTIR、粘接強(qiáng)度測試、熱導(dǎo)率測試、熱膨脹系數(shù)測試、介電常數(shù)測試等對制備的復(fù)合材料進(jìn)行了表征與分析。在有效介質(zhì)均勻分布理論及傅里葉導(dǎo)熱理論的基礎(chǔ)上,運(yùn)用Pal模型與Lewis-Nielsen模型計(jì)算理論熱導(dǎo)率值,結(jié)合熱導(dǎo)率實(shí)驗(yàn)結(jié)果與SEM圖分析了范德瓦爾斯力對于復(fù)合材料熱導(dǎo)率的影響。在此基礎(chǔ)上,將制備的氮化硼/環(huán)氧樹脂粘接材料與基板材料一起,制備環(huán)氧樹脂多層復(fù)合材料,實(shí)驗(yàn)測試并研究了表面處理對于多層復(fù)合材料熱導(dǎo)率、粘接強(qiáng)度、界面耐溫性能及溫度對耐久性能的影響。得到的主要結(jié)果如下:①在應(yīng)用Pal模型與Lewis-Nielsen模型計(jì)算制備的碳化硼/環(huán)氧樹脂、二氧化硅/環(huán)氧樹脂復(fù)合材料熱導(dǎo)率時發(fā)現(xiàn):隨著導(dǎo)熱微粉質(zhì)量分?jǐn)?shù)的增加,導(dǎo)熱微粉之間的距離減小,范德瓦耳斯力的作用增強(qiáng),實(shí)驗(yàn)中二氧化硅/環(huán)氧樹脂復(fù)合材料和碳化硼/環(huán)氧樹脂復(fù)合材料的熱導(dǎo)率也相繼增加。通過對二氧化硅/環(huán)氧樹脂復(fù)合材料的SEM圖進(jìn)行分析,證實(shí)了我們對于復(fù)合材料熱導(dǎo)率機(jī)理的推斷是正確的。②通過多次實(shí)驗(yàn)與性能測試,確定下來最佳的導(dǎo)熱微粉表面處理方案。并用這種處理方法處理氮化硼導(dǎo)熱微粉。實(shí)驗(yàn)結(jié)果表明:經(jīng)表面處理后的氮化硼制備的氮化硼/環(huán)氧樹脂復(fù)合材料熱導(dǎo)率要遠(yuǎn)高于未經(jīng)過表面處理的氮化硼/環(huán)氧樹脂復(fù)合材料的熱導(dǎo)率。與此同時,經(jīng)過表面處理的氮化硼/環(huán)氧樹脂復(fù)合材料的粘接強(qiáng)度要優(yōu)于沒有經(jīng)過表面處理的氮化硼/環(huán)氧樹脂復(fù)合材料。③經(jīng)過表面處理的氮化硼/環(huán)氧樹脂復(fù)合材料作為粘接劑,與基板材料一起制備的三層復(fù)合材料,其熱導(dǎo)率遠(yuǎn)高于未經(jīng)過表面處理的氮化硼/環(huán)氧樹脂復(fù)合材料、基板材料組成的三層復(fù)合材料的熱導(dǎo)率。在光學(xué)顯微鏡下觀察氮化硼/環(huán)氧樹脂三層復(fù)合材料宏觀表面發(fā)現(xiàn)(俯視圖與側(cè)視圖),未經(jīng)過表面處理的氮化硼/環(huán)氧樹脂復(fù)合材料表面出現(xiàn)了明顯的熱膨脹,材料被破壞。而經(jīng)過表面處理的氮化硼/環(huán)氧樹脂復(fù)合材料的表面,在溫度升高時,表面未有明顯變化,耐溫性增強(qiáng)。對制備的三層復(fù)合材料進(jìn)行相同時長,相同溫度的熱處理,發(fā)現(xiàn)經(jīng)過表面處理的三層復(fù)合材料耐久性更好。
[Abstract]:The heat generated in the high power LED chip can not be lost quickly and effectively, which will seriously affect the luminous intensity and service life of high power LED. With the energy saving and emission reduction, the development of low carbon economic policy, the demand for green lighting is increasing day by day, making the application of high-power LED more and more widely in the field of lighting. The problem of heat dissipation is a difficult problem to be overcome in the field of solid-state lighting. In the multi-layer structure of high power LED, the low thermal conductivity and interface treatment of the interlayer bonding material become a breakthrough point to improve the heat dissipation. The interlayer adhesive needs to have high thermal conductivity, bonding strength, good insulation performance and the ability to improve the heat dissipation. The thermal expansion coefficient matched by the bonding material can effectively improve the heat dissipation of the high power LED. On the basis of the analysis and summary of the current development of the insulation and heat conduction adhesive materials, according to the existing research, the silane coupling agent and water bath heating method are used to improve the micro and macro two interfaces of the heat conduction micro powder and interlayer materials, and the preparation of the materials is prepared. Boron carbide / epoxy resin, silica / epoxy resin, boron nitride / epoxy resin composites were used to characterize and analyze the composite materials prepared by OLYMPUS_BX53 optical microscope, SEM, FTIR, bonding strength test, thermal conductivity test, thermal expansion coefficient test, dielectric constant test and so on. On the basis of Fu Liye's thermal conductivity theory, the Pal model and Lewis-Nielsen model are used to calculate the theoretical thermal conductivity, and the thermal conductivity test results and the SEM diagram are used to analyze the influence of Vander Vauls Ley on the thermal conductivity of the composites. On this basis, the prepared boron nitride / epoxy resin bonding material is prepared with the substrate, and the epoxy resin is prepared. The effects of surface treatment on the thermal conductivity, bonding strength, interfacial temperature resistance and temperature on durability of multilayer composites are tested and studied. The main results are as follows: (1) boron carbide / epoxy resin, silica / epoxy resin composites prepared by using Pal model and Lewis-Nielsen model are obtained. The thermal conductivity shows that with the increase of the mass fraction of the heat conduction powder, the distance between the heat conduction micropowders decreases, and the role of van der Waals is enhanced. The thermal conductivity of the silica / epoxy resin composite and the boron carbide / epoxy resin composites are also increased in the experiment. The SEM diagram of the silica / epoxy resin composites is obtained. A row analysis confirms that the inference of the thermal conductivity mechanism of the composite is correct. 2. By several experiments and performance tests, the best surface treatment scheme for the heat conduction micro powder is determined. And this treatment is used to treat the boron nitride thermal conductive powder. The experimental results show that boron nitride / epoxy tree is prepared by the surface treated boron nitride. The thermal conductivity of the composite material is much higher than that of the boron nitride / epoxy resin composite without surface treatment. At the same time, the bonding strength of the surface treated boron nitride / epoxy resin composite is better than that of the boron nitride / epoxy resin composite without surface treatment. 3. The surface treated boron nitride / ring has been used. The oxygen resin composite material is a three layer composite made with the substrate material. The thermal conductivity of the composite is much higher than that of the boron nitride / epoxy resin composite without surface treatment. The thermal conductivity of the three layer composite material of the substrate material is observed. Under the optical microscope, the macroscopic surface of the boron nitride / epoxy resin three layer composite material is observed under the optical microscope. It is found that the surface of the boron nitride / epoxy resin composite surface without surface treatment has obvious thermal expansion, and the material is destroyed. The surface of the surface treated boron nitride / epoxy resin composite is not obviously changed at the temperature, and the temperature resistance is enhanced. The three layer composite materials are prepared. At the same time, the heat treatment at the same temperature showed that the surface treated three layer composite material had better durability.
【學(xué)位授予單位】:重慶大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TB332
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃志群,高桂復(fù),索艷麗,劉翠云;氮化硼生產(chǎn)工藝的改進(jìn)[J];潤滑與密封;1984年04期
2 司徒杰生;;氮化硼的合成方法[J];無機(jī)鹽工業(yè);1987年01期
3 ;微細(xì)氮化硼研制成功[J];遼寧化工;1990年05期
4 王運(yùn)峰,林靜春;氮化硼的生產(chǎn)方法[J];河南科技;1994年06期
5 賴澤鋒;高志增;廉剛;李凱;景海鵬;崔得良;趙顯;陶緒堂;;利用水熱合成方法制備正交氮化硼微晶[J];高等學(xué);瘜W(xué)學(xué)報;2008年05期
6 朱玲玲;譚淼;王康;廉剛;王琪瓏;崔得良;陶緒堂;;納米氮化硼在吡啶熱條件下的物相轉(zhuǎn)變規(guī)律[J];化學(xué)學(xué)報;2009年09期
7 劉棟;唐成春;薛彥明;李杰;;新型多孔氮化硼材料[J];化學(xué)進(jìn)展;2013年07期
8 劉孝定;;燒結(jié)氮化硼[J];陶瓷;1976年03期
9 楊世平;熱解氮化硼與各種金屬間的摩擦和物質(zhì)轉(zhuǎn)移特性[J];機(jī)械工程材料;1980年04期
10 鈕因健;;氮化硼薄膜的合成[J];稀有金屬;1985年05期
相關(guān)會議論文 前10條
1 ,
本文編號:1910593
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1910593.html