自旋轉(zhuǎn)換納米材料的合成及性能研究
發(fā)布時(shí)間:2018-05-16 06:30
本文選題:自旋轉(zhuǎn)換 + 亞鐵三唑。 參考:《江南大學(xué)》2017年碩士論文
【摘要】:自旋轉(zhuǎn)換化合物作為磁性分子材料的前沿領(lǐng)域,由于其可逆的高低自旋態(tài)轉(zhuǎn)換的性質(zhì)而在顯示器、傳感器、記憶材料及分子開關(guān)等領(lǐng)域具有潛在應(yīng)用。亞鐵三唑化合物是自旋轉(zhuǎn)換材料的典型代表,因其在納米尺寸下仍能夠保持良好的自旋轉(zhuǎn)換性能,而引起人們的廣泛興趣。本課題旨在通過將自旋轉(zhuǎn)換納米顆粒與氧化石墨烯(GO)基底復(fù)合、金屬中心替換、一維銀納米線(AgNWs)復(fù)合及與自旋交叉材料復(fù)合,合成了四類自旋轉(zhuǎn)換納米復(fù)合材料,并研究了該材料在結(jié)構(gòu)上的特點(diǎn)對(duì)其自旋交叉特性的影響:1.為了探索氧化石墨烯基底對(duì)自旋交叉配合物的形貌及自旋轉(zhuǎn)換特性的影響,采用了一種簡單原位自組裝的方式將亞鐵三唑類納米采用化學(xué)負(fù)載的方式負(fù)載到氧化石墨烯的表面,得到了自旋轉(zhuǎn)換/氧化石墨烯納米材料,掃描與透射圖顯示立方體狀的[Fe(Htrz)2(trz)](BF4)(FeH)納米顆粒生長在石墨烯的上下表面,且隨著反應(yīng)時(shí)間的增長,其尺寸和數(shù)量均有所增加。磁性測(cè)試表明隨著自組裝時(shí)間的的延長Fe H/GO的轉(zhuǎn)變溫度向高溫區(qū)移動(dòng),且摩爾磁化率-T曲線由平緩變得較為尖銳,這可能是由于FeH納米顆粒的尺寸、形貌及其與GO之間的相互作用的影響所致。2.為了探究不同金屬離子對(duì)自旋交叉材料的磁性產(chǎn)生的影響,將亞鐵三唑類自旋轉(zhuǎn)換化合物FeH納米顆粒的金屬中心Fe(II)用金屬中心Cu(Ⅱ)替換,得到了[Fe(Htrz)2(trz)](BF4)@[Cu(Htrz)2(trz)](BF4)(Fe H@Cu H)核殼納米材料。同時(shí),采用微乳液法將金屬中心Fe(II)用金屬中心Cu(Ⅱ)部分替換,得到[Fe_xCu_(1-x)(Htrz)2(trz)](BF4)(Fe_xCu_(1-x))納米顆粒。SEM圖表明隨著Cu(Ⅱ)金屬中心所占的比例的增加Fe_xCu_(1-x)納米顆粒的長徑比也在增大;而相較于長棒狀且表面光滑的FeH納米顆粒,FeH@Cu H表面變得粗糙,且尺寸有所增加;TEM圖可以直觀地觀察到核殼結(jié)構(gòu)的形成。磁性分析表明Fe_xCu_(1-x)納米表現(xiàn)出漸變型不可逆的自旋轉(zhuǎn)換行為,這可能是由于兩種金屬中心在其一維鏈狀結(jié)構(gòu)中隨機(jī)排列,導(dǎo)致其協(xié)同性降低所致。FeH@Cu H納米表現(xiàn)為突躍型可逆的自旋轉(zhuǎn)換行為,發(fā)生自旋交叉時(shí)的溫度有上升的趨勢(shì),且低溫區(qū)表現(xiàn)為反鐵磁性。3.為了將自旋轉(zhuǎn)換納米材料與導(dǎo)電性能優(yōu)異的銀納米線(AgNWs)結(jié)合,利用銀納米線表面裸露的銀金屬中心可與Htrz配位的性質(zhì),采用原位生長的方式合成具有導(dǎo)電性能的AgNWs@FeH及AgNWs@[Fe(NH2trz)3](BF4)2(AgNWs@FeN)自旋轉(zhuǎn)換納米材料。掃描電鏡圖表征了隨著原位生長時(shí)間的增長Ag NWs表面的FeH由顆粒狀逐漸生長成長條狀,掃描與透射電鏡圖表征了呈球狀FeN顆粒在AgNWs表面的成核和生長;磁性分析表明Ag NWs@FeH表現(xiàn)為突躍型可逆的自旋交叉現(xiàn)象,且其摩爾磁化率-T曲線變得平緩,發(fā)生自旋交叉時(shí)的溫度有上升的趨勢(shì),且磁滯回線寬度增加;而AgNWs@FeN則始終處于氋自旋態(tài),未表現(xiàn)出自旋交叉行為。這可能是由于納米顆粒形貌尺寸、核殼結(jié)構(gòu)、固態(tài)稀釋效應(yīng)及結(jié)合水含量等影響導(dǎo)致的。4.為了將兩種轉(zhuǎn)變溫度不同的自旋轉(zhuǎn)換化合物的性質(zhì)組合到同一種材料中,利用異質(zhì)外延的性質(zhì),采用向FeH納米分散液中逐滴加入FeN前驅(qū)體溶液的方法,合成了FeH@FeN核殼納米材料,SEM圖表征了隨著Fe N的前驅(qū)體溶液加入量的增加,Fe N殼在Fe H核表面由最初的顆粒狀逐漸生長為一層致密的殼,直觀地證明核殼結(jié)構(gòu)的形成;磁性分析表明核殼納米表現(xiàn)為滯回型自旋轉(zhuǎn)換行為,且其轉(zhuǎn)變溫度對(duì)應(yīng)于FeH的自旋轉(zhuǎn)變溫度,而Fe N殼中的Fe(II)在所測(cè)的溫度范圍內(nèi)處于氋自旋狀態(tài),并未發(fā)生自旋轉(zhuǎn)換現(xiàn)象,這可能是由于Fe N殼自身性質(zhì)及其小的尺寸所致。
[Abstract]:As the frontiers of magnetic molecular materials, spin conversion compounds have potential applications in the fields of display, sensors, memory materials and molecular switches due to their reversible high and low spin state transitions. The ferrous three azole is a typical representative of the spin conversion material, which can still maintain a good self in the nanometer size. The purpose of this study is to synthesize four kinds of spin conversion nanocomposites by compounding spin converted nanoparticles and graphene oxide (GO) substrates, substitution of metal center, one dimensional silver nanowire (AgNWs) composite and spin cross materials, and the structural characteristics of the material are studied. The influence of the spin cross characteristics: 1. in order to explore the influence of the graphene oxide substrate on the morphology and spin conversion properties of the spin cross complexes, a simple in situ self-assembly was used to load the iron three azoles on the surface of graphene oxide with a chemical load, and the spin conversion / graphite oxide was obtained. Nanomaterials, scanning and transmission diagrams show that cubic [Fe (Htrz) 2 (Trz)] (BF4) (BF4) (FeH) nanoparticles grow on the upper and lower surfaces of graphene, and as the reaction time increases, the size and quantity of the nanoparticles are increased. The magnetic test shows that with the time of self assembly, the transition temperature of Fe H/GO moves to the high temperature zone, and the molar magnetization is shown. The rate -T curve becomes more sharp from the gentle, which may be due to the influence of the size, morphology and interaction between the FeH nanoparticles and the interaction with GO to explore the influence of different metal ions on the magnetic production of the spin cross materials, and the metal center Fe (II) of the ferrous three azole type spin conversion compound FeH nanoparticles. Central Cu (Htrz) 2 (Trz)] (BF4) @[Cu (Htrz) 2 (Trz)] (BF4) (BF4) (Fe H@Cu H) nuclear shell nanomaterials were obtained. Meanwhile, the microemulsion method was used to replace the metal center of metal center (2). The ratio of the length to diameter of Fe_xCu_ (1-x) nanoparticles is also increasing, while the surface of FeH@Cu H becomes rough and the size increases, compared with the long rod like and smooth FeH nanoparticles. The TEM diagram can observe the formation of the shell structure intuitively. The magnetic analysis shows that the Fe_xCu_ (1-x) nanometers exhibit the irreversible irreversible spin conversion behavior of the Fe_xCu_ (1-x) nanometers. This may be due to the random arrangement of two metal centers in one of its one-dimensional chain structures, resulting in the reduction of.FeH@Cu H nanoparticles as a result of a jump type and reversible spin conversion. The temperature of the spin crossing is rising, and the low temperature region is antiferromagnetic.3. in order to make the spin converted nanomaterial and electrical conductivity. Excellent silver nanowires (AgNWs) binding, using the properties of the silver metal center exposed on the silver nanowire surface with the Htrz coordination, can be used to synthesize the conductive AgNWs@FeH and AgNWs@[Fe (NH2trz) 3] (BF4) 2 (AgNWs@FeN) spin conversion nanoscale by in situ growth. The scanning electron microscopy diagram characterizing the increase Ag with the growth time in situ. The FeH on the surface of NWs is growing and growing in a granular form. The scanning and transmission electron microscopy shows the nucleation and growth of spherical FeN particles on the surface of AgNWs. The magnetic analysis shows that Ag NWs@FeH is a jump type and reversible spin cross phenomenon, and the -T curve of the molar susceptibility to -T becomes slow and the temperature of the spin cross is rising. The width of the hysteresis loop is increased, while the AgNWs@FeN is always in the spin state and does not exhibit the spin cross behavior. This may be due to the effect of.4. on the properties of the two kinds of spin conversion compounds, due to the size of the nanoparticles, the core and shell structure, the solid state dilution effect and the combined water content. In the material, using the properties of heteroepitaxy, the FeH@FeN nuclear shell nanomaterials are synthesized by adding FeN precursor solution to the FeH nano dispersions. The SEM diagram shows that the Fe N shell grows from the initial granular to a dense shell along the Fe H nuclear surface with the increase of the Fe N precursor solution. The magnetic analysis shows that the nuclear shell nanoscale shows the hysteresis type spin conversion behavior, and the transition temperature corresponds to the spin transition temperature of FeH, while the Fe (II) in the Fe N shell is in the spin state within the measured temperature range, and does not have the spin conversion image, which may be due to the properties of the Fe N shell itself and its small ruler. It is the result of inch.
【學(xué)位授予單位】:江南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB383.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 郄冰玉;唐亞麗;盧立新;王軍;丘曉琳;;納米纖維素在可降解包裝材料中的應(yīng)用[J];包裝工程;2017年01期
2 郝靚;熊光;劉麗萍;龍化云;靳鳳英;王祥生;;高分散加氫脫硫催化劑制備及其對(duì)二苯并噻吩的催化性能(英文)[J];催化學(xué)報(bào);2016年03期
3 楊靜;崔世海;陳慧慧;閔丹丹;練鴻振;;磁載納米TiO_2復(fù)合光催化材料的研究進(jìn)展[J];環(huán)境化學(xué);2014年11期
4 劉彥靜;曾小兵;代朝猛;周雪飛;張亞雷;;石墨烯納米復(fù)合材料在水處理中的應(yīng)用研究進(jìn)展[J];材料導(dǎo)報(bào);2013年07期
5 張?zhí)忑?;納米材料操作定義研究進(jìn)展[J];科技導(dǎo)報(bào);2012年12期
6 朱敦如;齊麗;程慧敏;沈旋;盧偉;;Fe(Ⅱ)自旋交叉分子材料[J];化學(xué)進(jìn)展;2009年06期
相關(guān)碩士學(xué)位論文 前1條
1 袁雙;金屬氧化物一維納米陣列的鋰離子電池性能研究[D];東北大學(xué);2012年
,本文編號(hào):1895828
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1895828.html
最近更新
教材專著