天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 科技論文 > 材料論文 >

原位顆粒增強(qiáng)鈦基復(fù)合材料的制備與性能研究

發(fā)布時(shí)間:2018-05-16 03:29

  本文選題:粉末冶金 + 高能球磨; 參考:《吉林大學(xué)》2017年博士論文


【摘要】:鈦基復(fù)合材料由于具有高比強(qiáng)度、比模量,且具有比鈦合金更優(yōu)異的高溫抗蠕變性能、抗氧化性能及高的熱穩(wěn)定性和熱疲勞強(qiáng)度等,成為航空航天領(lǐng)域最具發(fā)展?jié)摿Φ慕Y(jié)構(gòu)材料之一。通過(guò)原位合成法制備鈦基復(fù)合材料,具有增強(qiáng)體與基體界面清潔、結(jié)合性好,且熱力學(xué)穩(wěn)定性高等突出優(yōu)點(diǎn),近年來(lái)已成為研究的熱點(diǎn)。復(fù)合材料中增強(qiáng)體的尺寸和形貌特征,及其在基體中的分布特點(diǎn)等對(duì)復(fù)合材料的性能有很大的影響,因此研究原位顆粒增強(qiáng)相的形成機(jī)理及其對(duì)復(fù)合材料性能的影響機(jī)制,對(duì)高性能原位顆粒增強(qiáng)鈦基復(fù)合材料的開(kāi)發(fā)和應(yīng)用具有重要意義。本研究以具有優(yōu)良的熱加工性、抗氧化性和高耐磨性的鈦基復(fù)合材料為目標(biāo),采用粉末冶金原位合成法制備鈦基復(fù)合材料,以Ti-7Al合金(α-鈦合金)為鈦基復(fù)合材料的基體,通過(guò)粉末高能球磨與反應(yīng)熱壓燒結(jié)工藝相結(jié)合的方法,制備Ti-7Al-B(TiB/Ti)及Ti-7Al-B-C(TiB+TiC/Ti)顆粒增強(qiáng)鈦基復(fù)合材料。在原位顆粒增強(qiáng)相的形成、高溫壓縮流變機(jī)制、高溫氧化及摩擦磨損理論基礎(chǔ)上,設(shè)計(jì)開(kāi)發(fā)低成本、高性能鈦基復(fù)合材料,為其工業(yè)應(yīng)用奠定理論和工藝基礎(chǔ)。本文的研究主要包括以下幾個(gè)方面:(1)研究了粉末高能球磨及反應(yīng)熱壓燒結(jié)工藝,成功制備了晶粒細(xì)小的原位自生顆粒增強(qiáng)鈦基復(fù)合材料。采用粉末原位反應(yīng)法,利用高能球磨加熱壓燒結(jié)工藝成功制備了近全致密的TiB/Ti及(TiB+TiC)/Ti顆粒增強(qiáng)鈦基復(fù)合材料,獲得晶粒細(xì)小的基體組織及顆粒增強(qiáng)相。其微觀組織分析表明,顆粒增強(qiáng)相與基體界面清潔、結(jié)合性好,在基體中彌散分布。高能球磨使Ti、Al、B(C)粉末細(xì)化,并實(shí)現(xiàn)了組元間的固溶及部分機(jī)械合金化,因而獲得的燒結(jié)組織晶粒細(xì)小,TiB/Ti復(fù)合材料中TiB增強(qiáng)相的直徑尺寸均在1μm以下。(TiB+TiC)/Ti復(fù)合材料燒結(jié)前粉末在高能球磨作用下形成了無(wú)定形結(jié)構(gòu),燒結(jié)過(guò)程中原子的有序化過(guò)程阻礙了增強(qiáng)相的長(zhǎng)大,形成了平均直徑小于100nm的納米級(jí)TiB晶須和平均直徑約2μm的等軸狀TiC顆粒。同時(shí),TiB和TiC增強(qiáng)相對(duì)晶界運(yùn)動(dòng)有阻礙作用,抑制了基體晶粒的長(zhǎng)大,細(xì)化了基體組織。(2)研究了復(fù)合材料高溫變形流變行為及組織演變規(guī)律。通過(guò)對(duì)TiB/Ti及(TiB+TiC)/Ti顆粒增強(qiáng)鈦基復(fù)合材料的高溫變形流變行為的研究,揭示了流變應(yīng)力隨變形溫度和應(yīng)變速率的變化規(guī)律:峰值流變應(yīng)力隨變形溫度的升高而降低,隨應(yīng)變速率的升高而升高;且溫度越低的條件下,應(yīng)變速率變化對(duì)流變應(yīng)力峰值的影響越大;而應(yīng)變速率越低,峰值應(yīng)力隨溫度下降幅度越小。TiB/Ti及(TiB+TiC)/Ti復(fù)合材料的熱高溫變形過(guò)程是熱激活過(guò)程,其高溫?zé)嶙冃渭せ钅芊謩e為166.02和208.23kJ.mol-1,兩復(fù)合材料的軟化機(jī)制均為以動(dòng)態(tài)回復(fù)為主,動(dòng)態(tài)再結(jié)晶為輔。建立了TiB/Ti及(TiB+TiC)/Ti復(fù)合材料的高溫變形本構(gòu)方程和流變應(yīng)力方程。高溫?zé)釅嚎s過(guò)程中,復(fù)合材料中原位生成的細(xì)小彌散的TiB和TiC增強(qiáng)體,對(duì)位錯(cuò)有強(qiáng)烈的阻礙作用,使位錯(cuò)在邊界累積形成位錯(cuò)亞晶;增強(qiáng)體在基體內(nèi)轉(zhuǎn)動(dòng)時(shí)引起兩側(cè)晶格產(chǎn)生位相差,也會(huì)形成亞晶。這些亞晶都可以作為動(dòng)態(tài)再結(jié)晶的核心,為動(dòng)態(tài)再結(jié)晶提供有利條件。復(fù)合材料的微觀組織在高溫下保持穩(wěn)定,經(jīng)高溫變形后基體晶粒及TiB和TiC增強(qiáng)相都沒(méi)有明顯長(zhǎng)大。這使材料可以在熱加工后仍能保持加工前良好的力學(xué)性能,同時(shí)也為這種材料在高溫下服役提供了可能性。(3)研究了復(fù)合材料的摩擦磨損性能及其摩擦磨損機(jī)理。摩擦磨損研究表明,在外加載荷20-50N,滑動(dòng)速度0.3-1.2m/s條件下,Ti-7Al合金、TiB/Ti及(TiB+TiC)/Ti復(fù)合材料的磨損失重均隨載荷和滑動(dòng)速度的增加而增加。TiB和TiC增強(qiáng)相的加入有效提高了材料的磨損性能,TiB/Ti和(TiB+TiC)/Ti復(fù)合材料的磨損失重較Ti-7Al合金顯著降低,在實(shí)驗(yàn)條件范圍內(nèi)分別約為Ti-7Al合金的57%和27%。以上實(shí)驗(yàn)條件范圍內(nèi),Ti-7Al合金的主要磨損機(jī)制為氧化剝層磨損和磨粒磨損,TiB/Ti復(fù)合材料的磨損機(jī)制為較輕的氧化剝層磨損和磨粒磨損,(TiB+TiC)/Ti復(fù)合材料的磨損機(jī)制為微切削磨損和疲勞剝層磨損。(4)研究了復(fù)合材料的高溫抗氧化性能,并闡明了其氧化機(jī)制及氧化膜生長(zhǎng)機(jī)理。對(duì)TiB/Ti和(TiB+TiC)/Ti復(fù)合材料及其基體合金在700℃、800℃和900℃進(jìn)行60h恒溫?cái)嗬m(xù)氧化實(shí)驗(yàn),發(fā)現(xiàn)三種材料的氧化產(chǎn)物都只有TiO_2和Al2O3,均形成了連續(xù)且厚度均勻的氧化膜。氧化膜為復(fù)雜的多層復(fù)合結(jié)構(gòu),按元素分布情況,氧化膜由外到內(nèi)可分為TiO_2層、高Al2O3層、TiO_2層、TiO_2+Al2O3混合層等。形成這種復(fù)雜結(jié)構(gòu)的原因是,在高溫氧化過(guò)程中,Al的氧化物Al2O3在反應(yīng)熱力學(xué)方面的優(yōu)勢(shì)和Ti的氧化物TiO_2在生長(zhǎng)動(dòng)力學(xué)方面的優(yōu)勢(shì),競(jìng)爭(zhēng)起主導(dǎo)作用的結(jié)果。TiB/Ti和(TiB+TiC)/Ti復(fù)合材料及其基體合金的氧化動(dòng)力學(xué)曲線均為類似拋物線形狀,即氧化初期,增重速度較快,隨氧化時(shí)間增加,氧化增重減緩。兩種復(fù)合材料的氧化增重均低于基體合金,(TiB+TiC)/Ti復(fù)合材料的抗氧化性能最佳,在700℃、800℃和900℃氧化60h后的氧化增重比基體合金分別降低了約15%、21.5%和24.5%。分析原因?yàn)?復(fù)合材料細(xì)小的晶粒和彌散分布的增強(qiáng)相,為Al離子的擴(kuò)散提供了大量短程快速通道(晶界和相界面),使氧化初期更大范圍內(nèi)的Al離子能夠參與到反應(yīng)中來(lái),形成致密性更高的Al2O3層,從而抑制了后續(xù)TiO_2生成過(guò)程中Ti和O的擴(kuò)散,降低了氧化速度。
[Abstract]:Titanium matrix composites have become one of the most promising structural materials in the field of Aeronautics and Astronautics because of their high specific strength, specific modulus, high temperature resistance to high temperature, high thermal stability and thermal fatigue strength, which are better than titanium alloys. It has been a hot spot in recent years. The size and morphology of the reinforced body in the composite and its distribution in the matrix have a great influence on the properties of the composites. Therefore, the formation mechanism of the in-situ particle reinforced phase and its composite materials are studied. The effect mechanism of material properties is of great significance for the development and application of high performance in situ particle reinforced titanium matrix composites. This study aims at titanium matrix composites with excellent thermal processing, oxidation resistance and high wear resistance. The titanium matrix composites are prepared by in situ powder metallurgy (P / M) synthesis method, with Ti-7Al alloy (alpha titanium alloy) as the target. Ti-7Al-B (TiB/Ti) and Ti-7Al-B-C (TiB+TiC/Ti) particle reinforced titanium matrix composites are prepared by high energy ball milling and reactive hot pressing sintering of titanium matrix composites. On the basis of the formation of in situ particle reinforced phase, high temperature compression rheology mechanism, high temperature oxidation and friction and wear theory, the low cost is designed and developed. The high performance titanium matrix composites have laid the theoretical and technological basis for their industrial applications. The research in this paper mainly includes the following aspects: (1) the high energy ball milling and the reaction hot press sintering process have been studied. The in-situ particle reinforced titanium matrix composites with fine grain are prepared successfully. The powder in situ reaction method is used to make use of high energy ball milling. The nearly fully compact TiB/Ti and (TiB+TiC) /Ti particle reinforced titanium matrix composites were prepared by the heating and pressure sintering process. The fine grain structure and particle reinforced phase were obtained. The microstructure analysis showed that the particle reinforced phase and the matrix interface were clean, good binding and dispersed in the matrix. High energy ball milling made Ti, Al, B (C) powder refined, and The solid solution and partial mechanical alloying between the components are realized, and the sintered microstructure is fine. The diameter of the reinforced phase of the TiB in TiB/Ti composite is below 1 m. (TiB+TiC) the amorphous structure of the powder is formed before the high energy ball milling. The ordering process of the atoms hinders the enhancement during the sintering process. With the growth of the phase, the nanoscale TiB whiskers with an average diameter of less than 100nm and the average diameter of the TiC particles with an average diameter of about 2 m are formed. At the same time, TiB and TiC enhance the relative grain boundary movement, which inhibits the growth of the matrix grain and refine the matrix. (2) the rheological behavior and microstructure evolution of the composite materials at high temperature are studied. Through T The rheological behavior of iB/Ti and (TiB+TiC) /Ti particles reinforced titanium matrix composites at high temperature was studied. The variation of the rheological stress with the deformation temperature and strain rate was revealed. The peak rheological stress decreased with the increase of the deformation temperature and increased with the increase of the strain rate; and the change of strain rate to the rheological stress under the condition of the lower temperature The greater the effect of peak force, the lower the strain rate, the smaller the decrease of the peak stress with the temperature, the heat and high temperature deformation process of.TiB/Ti and (TiB+TiC) /Ti composites is a heat activation process, the activation energy of the thermal deformation at high temperature is 166.02 and 208.23kJ.mol-1 respectively. The softening mechanism of the two composite material is mainly dynamic recovery, and the dynamic recrystallization is a dynamic recrystallization. The constitutive equation and the rheological stress equation of the high temperature deformation of TiB/Ti and (TiB+TiC) /Ti composites are established. In the process of high temperature thermal compression, the small dispersed TiB and TiC reinforcement in the composite in situ have a strong hindrance to the dislocation, and the dislocation is accumulated as a dislocation subcrystal in the boundary, and the reinforcement is caused by the rotation of the matrix. These subcrystals can serve as the core of the dynamic recrystallization and provide a favorable condition for dynamic recrystallization. The microstructure of the composite remains stable at high temperature, and the grains of the matrix and the TiB and TiC phases are not obviously grown after high temperature deformation. This makes the material still able to remain after hot processing. It is possible to maintain good mechanical properties before processing, and also provide the possibility for this material to serve at high temperature. (3) the friction and wear properties of the composites and their friction and wear mechanisms are studied. The friction and wear study shows that the Ti-7Al alloy, TiB/Ti and (TiB+TiC) /Ti composites are loaded under the loading of 20-50N and sliding speed 0.3-1.2m/s. The wear loss is increased with the increase of load and sliding speed, and the addition of.TiB and TiC enhanced phase effectively improves the wear resistance of the material. The wear loss of TiB/Ti and (TiB+TiC) /Ti composites is significantly lower than that of Ti-7Al alloy. In the experimental conditions, the Ti-7Al alloy is about 57% and 27%. above the experimental conditions, respectively. The main wear mechanism is oxidation peeling wear and abrasive wear. The wear mechanism of TiB/Ti composites is light oxidation peeling wear and abrasive wear. The wear mechanism of (TiB+TiC) /Ti composites is micro cutting wear and fatigue peeling wear. (4) the oxidation resistance of composite materials at high temperature is studied, and the oxidation mechanism and oxygen are clarified. TiB/Ti and (TiB+TiC) /Ti composites and their matrix alloys were subjected to 60H constant temperature intermittent oxidation at 700, 800 and 900 C. It was found that the oxidation products of the three materials were all TiO_2 and Al2O3, which formed a continuous and uniform thickness of the oxide film. The oxide film was a complex multilayer composite structure. From outside to inside, the membrane can be divided into TiO_2 layer, high Al2O3 layer, TiO_2 layer and TiO_2+Al2O3 mixed layer. The reason for this complex structure is that in the process of high temperature oxidation, the advantages of Al oxide Al2O3 in reaction thermodynamics and the growth kinetics of Ti oxide TiO_2 in the growth kinetics are the leading result of.TiB/Ti and (TiB+TiC). The oxidation kinetic curves of /Ti composite and its matrix alloy are similar to the shape of parabola. That is, the weight increase speed is faster in the early stage of oxidation and the oxidation weight increases with the oxidation time. The oxidation weight gain of the two composites is lower than that of the matrix alloy, and the oxidation resistance of (TiB+TiC) /Ti composite material is the best, at 700, 800 and 900. The oxidative weight gain after H is reduced by about 15%, 21.5% and 24.5%., respectively. The reason for the analysis is that the fine grain of the composite and the enhanced phase of dispersion distribution provide a large number of short range fast channels (grain boundary and phase interface) for the diffusion of Al ions, so that the Al ions in the larger scope of the initial oxidation can be involved in the reaction and form the densification. The higher Al2O3 layer inhibited the diffusion of Ti and O in the subsequent TiO_2 generation process and reduced the oxidation rate.

【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB333

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 廖際常;制作鈦基復(fù)合材料的最新工藝[J];稀有金屬快報(bào);2000年05期

2 吳全興;鈦基復(fù)合材料[J];稀有金屬快報(bào);2001年09期

3 吳全興;可超塑加工的鈦基復(fù)合材料的開(kāi)發(fā)[J];稀有金屬快報(bào);2001年11期

4 湯慧萍,黃伯云,劉詠,王海兵;粉末冶金顆粒增強(qiáng)鈦基復(fù)合材料研究進(jìn)展[J];粉末冶金技術(shù);2004年05期

5 朱安莉;覃業(yè)霞;呂維潔;;顆粒增強(qiáng)鈦基復(fù)合材料高溫氧化性能的研究[J];現(xiàn)代制造工程;2005年S1期

6 毛小南;于蘭蘭;;非連續(xù)增強(qiáng)鈦基復(fù)合材料研究新進(jìn)展[J];中國(guó)材料進(jìn)展;2010年05期

7 侯舒蘭;陳靜瑜;;鈦基復(fù)合材料的研究與發(fā)展[J];硅谷;2010年13期

8 宋衛(wèi)東;栗建橋;劉海燕;;超高速撞擊下鈦基復(fù)合材料動(dòng)力學(xué)行為研究[J];高壓物理學(xué)報(bào);2011年05期

9 董桑林;鈦基復(fù)合材料的進(jìn)展[J];稀有金屬;1993年03期

10 曾泉浦;顆粒強(qiáng)化鈦基復(fù)合材料研究取得新進(jìn)展[J];鈦工業(yè)進(jìn)展;1994年04期

相關(guān)會(huì)議論文 前10條

1 李棣泉;梁振鋒;張甫政;羅鍇;昌春華;斯淑萍;;Ti-Ni-Mo-Cu-Cr-C系反應(yīng)生成顆粒增強(qiáng)鈦基復(fù)合材料[A];中國(guó)有色金屬學(xué)會(huì)第三屆學(xué)術(shù)會(huì)議論文集——科學(xué)技術(shù)論文部分[C];1997年

2 張荻;呂維潔;張小農(nóng);吳人潔;;原位自生鈦基復(fù)合材料的制備、微觀結(jié)構(gòu)與力學(xué)性能[A];西部大開(kāi)發(fā) 科教先行與可持續(xù)發(fā)展——中國(guó)科協(xié)2000年學(xué)術(shù)年會(huì)文集[C];2000年

3 張荻;呂維潔;覃繼寧;吳人潔;;原位自生鈦基復(fù)合材料的研究[A];中國(guó)復(fù)合材料學(xué)會(huì)2003年復(fù)合材料學(xué)術(shù)年會(huì)論文集[C];2003年

4 張荻;呂維潔;覃繼寧;張國(guó)定;吳人潔;;原位自生鈦基復(fù)合材料的研究[A];中國(guó)空間科學(xué)學(xué)會(huì)空間材料專業(yè)委員會(huì)’2004學(xué)術(shù)交流會(huì)論文集[C];2004年

5 張荻;呂維潔;覃繼寧;王立強(qiáng);陳一飛;;原位自生鈦基復(fù)合材料界面研究[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年

6 徐琳;宋衛(wèi)東;寧建國(guó);;顆粒增強(qiáng)鈦基復(fù)合材料動(dòng)態(tài)本構(gòu)關(guān)系研究[A];第五屆全國(guó)計(jì)算爆炸力學(xué)會(huì)議論文摘要[C];2012年

7 郭相龍;李小璀;;變形量對(duì)鈦基復(fù)合材料微觀結(jié)構(gòu)以及力學(xué)性能的影響[A];2012年海峽兩岸破壞科學(xué)/材料試驗(yàn)學(xué)術(shù)會(huì)議論文摘要集[C];2012年

8 王沛培;呂維潔;覃繼寧;陳一飛;張志偉;張荻;;熱處理對(duì)原位自生7715D鈦基復(fù)合材料力學(xué)性能的影響[A];第六屆華東三省一市真空學(xué)術(shù)交流會(huì)論文集[C];2009年

9 耿林;鄭鎮(zhèn)洙;陳剛;;熱壓反應(yīng)自生鈦基復(fù)合材料高溫拉伸斷裂分析[A];科技、工程與經(jīng)濟(jì)社會(huì)協(xié)調(diào)發(fā)展——中國(guó)科協(xié)第五屆青年學(xué)術(shù)年會(huì)論文集[C];2004年

10 王敏敏;羅月新;計(jì)波;朱峰;呂維潔;張荻;;原位自生鈦基復(fù)合材料的產(chǎn)業(yè)化分析[A];節(jié)能環(huán)保 和諧發(fā)展——2007中國(guó)科協(xié)年會(huì)論文集(一)[C];2007年

相關(guān)重要報(bào)紙文章 前2條

1 唐偉;低成本高性能鈦基復(fù)合材料制備技術(shù)研究[N];科技日?qǐng)?bào);2007年

2 鄭麗;鈦合金項(xiàng)目研究取得顯著進(jìn)展[N];科技日?qǐng)?bào);2004年

相關(guān)博士學(xué)位論文 前10條

1 盧俊強(qiáng);原位自生鈦基復(fù)合材料的熱氫處理研究[D];上海交通大學(xué);2010年

2 胡海亭;反應(yīng)熱壓制備網(wǎng)狀結(jié)構(gòu)TiBw/Ti60復(fù)合材料組織和性能研究[D];哈爾濱工業(yè)大學(xué);2015年

3 劉利萍;原位顆粒增強(qiáng)鈦基復(fù)合材料的制備與性能研究[D];吉林大學(xué);2017年

4 楊志峰;多元增強(qiáng)鈦基復(fù)合材料的微結(jié)構(gòu)及性能研究[D];上海交通大學(xué);2007年

5 肖旅;原位自生耐熱鈦基復(fù)合材料的高溫性能研究[D];上海交通大學(xué);2010年

6 毛建偉;原位鈦基復(fù)合材料的焊接工藝與機(jī)理研究[D];上海交通大學(xué);2014年

7 馬鳳倉(cāng);熱加工對(duì)原位自生鈦基復(fù)合材料組織和力學(xué)性能影響的研究[D];上海交通大學(xué);2006年

8 黃陸軍;增強(qiáng)體準(zhǔn)連續(xù)網(wǎng)狀分布鈦基復(fù)合材料研究[D];哈爾濱工業(yè)大學(xué);2010年

9 郭相龍;變形量對(duì)(TiB+La_2O_3)/Ti復(fù)合材料組織結(jié)構(gòu)及力學(xué)性能影響的研究[D];上海交通大學(xué);2013年

10 毛小南;TiC顆粒增強(qiáng)鈦基復(fù)合材料的內(nèi)應(yīng)力對(duì)材料機(jī)械性能的影響[D];西北工業(yè)大學(xué);2004年

相關(guān)碩士學(xué)位論文 前10條

1 吳金鵬;鈦基復(fù)合材料棒材包套熱擠壓制備及組織性能研究[D];哈爾濱工業(yè)大學(xué);2015年

2 孫永君;碳納米管增強(qiáng)鈦基復(fù)合材料的制備及性能研究[D];北京理工大學(xué);2015年

3 劉統(tǒng)軍;(TiB+La_2O_3)增強(qiáng)耐熱鈦基復(fù)合材料的組織和性能研究[D];上海交通大學(xué);2015年

4 王豆;顆粒增強(qiáng)鈦基復(fù)合材料力學(xué)性能數(shù)值模擬研究[D];北京理工大學(xué);2015年

5 李欣;二氧化鈦基復(fù)合材料的合成及其可見(jiàn)光催化性能研究[D];哈爾濱師范大學(xué);2016年

6 席少靜;碳纖維增強(qiáng)鈦基復(fù)合材料的界面與性能研究[D];長(zhǎng)春工業(yè)大學(xué);2016年

7 李陽(yáng)陽(yáng);PCD刀具切削鈦基復(fù)合材料試驗(yàn)研究[D];南京航空航天大學(xué);2015年

8 王萌萌;TiBw/Ti-6Al-4V復(fù)合材料的粉末冶金制備與組織性能研究[D];哈爾濱工業(yè)大學(xué);2016年

9 奚欣欣;單層CBN砂輪高速磨削鈦基復(fù)合材料試驗(yàn)研究[D];南京航空航天大學(xué);2016年

10 蘭姣姣;激光熔覆顆粒增強(qiáng)鈦基復(fù)合材料組織與性能研究[D];沈陽(yáng)航空航天大學(xué);2017年



本文編號(hào):1895254

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1895254.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b53dc***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
欧美区一区二在线播放| 国产亚洲神马午夜福利| 欧美区一区二在线播放| 久久99精品国产麻豆婷婷洗澡 | 中文字幕中文字幕一区二区| 欧美日韩国产欧美日韩| 日韩黄片大全免费在线看| 国产精品一区二区三区黄色片| 久久精视频免费视频观看| 麻豆果冻传媒一二三区| 亚洲欧洲一区二区中文字幕| 日韩欧美综合中文字幕| 日韩一区中文免费视频| 国产一级特黄在线观看| 日本欧美在线一区二区三区| 国产91麻豆精品成人区| 亚洲一区二区三区在线中文字幕| 久一视频这里只有精品| 亚洲综合天堂一二三区| 最新69国产精品视频| 成人区人妻精品一区二区三区| 亚洲精品一区二区三区免| 中文字幕av诱惑一区二区| 欧美亚洲另类久久久精品| 视频在线观看色一区二区| 中文字幕无线码一区欧美| 手机在线观看亚洲中文字幕| 91亚洲国产成人久久| 好吊日在线观看免费视频| 国产欧美高清精品一区| 欧美日韩国产的另类视频| 亚洲中文字幕高清乱码毛片| 又黄又硬又爽又色的视频| 亚洲欧美日韩中文字幕二欧美| 国产日韩精品激情在线观看| 丁香六月啪啪激情综合区| 国产级别精品一区二区视频 | 91超频在线视频中文字幕| 国产中文另类天堂二区| 少妇丰满a一区二区三区| 五月激情婷婷丁香六月网|