SiC顆粒增強Al-13Si-Cu-Mg基復合材料制備與持久性能研究
發(fā)布時間:2018-05-14 06:52
本文選題:攪拌鑄造 + SiCp/Al復合材料; 參考:《西安工業(yè)大學》2015年碩士論文
【摘要】:SiC顆粒增強鋁基復合材料具有高比強度,高剛度,耐疲勞,耐磨損,熱膨脹系數(shù)低,優(yōu)良的尺寸穩(wěn)定性,較強的可設計性等優(yōu)點,在汽車工業(yè)、航空航天、電子、軍工、體育等許多領域得到廣泛的應用。國內外對于SiC顆粒增強鋁基復合材料展開了大量研究,取得了一些重要應用成果,但是材料性能方面無法滿足大功率柴油機活塞的使用要求,并且制備工藝方面仍然達不到大規(guī)模的工業(yè)生產需要。為了提高鋁活塞合金綜合力學性能,以滿足高功率柴油發(fā)動機對活塞材料的要求。本文設計將10μmSiC顆粒加入到Al-13Si-Cu-Mg合金中,通過粉末冶金法與攪拌鑄造法相結合制備SiC顆粒增強鋁基復合材料,解決了微小增強體SiC顆粒難以加入到鋁合金中的問題,通過高剪切攪拌解決SiC顆粒在鋁合金中的分布不均勻問題,并運用SEM、TEM對制備的復合材料進行SiC顆粒/A1界面分析。為了分析活塞合金在高溫高壓條件下組織性能的變化,建立鋁合金微觀組織與宏觀性能關系模型。本文重點對活塞合金在350℃進行持久試驗,分析性能變化規(guī)律,并采用OM、SEM、TEM分析活塞合金組織演變規(guī)律。SiC顆粒增強鋁基復合材料制備中,首先采用粉末冶金法制備含SiC顆粒預制塊,然后采用高剪切攪拌法,將SiC顆粒以預制塊方式加入鋁合金溶液中,調整攪拌溫度、時間、SiC顆粒含量,確定在轉速6000r/min條件下2%SiCP,700℃下攪拌5min, SiC顆粒在基體中分布均勻。并通過SEM、TEM、HRTEM進行界面分析,表明SiC顆粒增強Al-13Si-Cu-Mg基復合材料界面類型分為非晶層界面和干凈界面,其中非晶層界面占大多數(shù),且非晶層界面與界面上鎂元素的富集和雜質相的形成有關;钊辖350℃持久試驗結果表明,當外加載荷為90MPa時試樣直接斷裂,隨著外加載荷的恒定減小,持久壽命增長,當外加載荷降到30MPa時持久壽命延長至102h。通過TEM分析可知持久拉伸過程中富銅相θ"-θ'-θ的轉變,和θ"相溶解是致使試樣持久壽命增加合金力學性能降低的主要原因。
[Abstract]:SiC particle reinforced aluminum matrix composites have the advantages of high specific strength, high stiffness, fatigue resistance, wear resistance, low thermal expansion coefficient, excellent dimensional stability, strong designability, etc., in automotive industry, aerospace, electronics, military industry, etc. Sports and many other fields are widely used. A great deal of research on SiC particle reinforced aluminum matrix composites has been carried out at home and abroad, and some important application results have been obtained, but the material properties can not meet the requirements of the piston of high power diesel engine. And the preparation process is still not able to meet the needs of large-scale industrial production. In order to improve the comprehensive mechanical properties of aluminum piston alloy to meet the requirements of high power diesel engine piston materials. In this paper, 10 渭 mSiC particles were added to Al-13Si-Cu-Mg alloy, and SiC particle reinforced aluminum matrix composites were prepared by powder metallurgy and agitation casting, which solved the problem that SiC particles were difficult to be added to aluminum alloy. The uneven distribution of SiC particles in aluminum alloy was solved by high shear stirring, and the interfacial analysis of SiC particles / A1 was carried out by means of SEM-TEM. In order to analyze the change of microstructure and properties of piston alloy under high temperature and high pressure, the relationship between microstructure and macroscopic properties of aluminum alloy was established. In this paper, the rupture test of piston alloy at 350 鈩,
本文編號:1886792
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1886792.html
最近更新
教材專著