全氟酞菁銅納米線形貌及其結(jié)構(gòu)變化的研究
發(fā)布時(shí)間:2018-05-09 13:34
本文選題:全氟酞菁銅 + 納米線。 參考:《云南大學(xué)》2016年碩士論文
【摘要】:酞菁是一種含有十八個(gè)π電子的大雜環(huán)平面結(jié)構(gòu)有機(jī)半導(dǎo)體材料。全氟酞菁銅因其分子間距更小,使得其具有優(yōu)異的光學(xué),電學(xué)性質(zhì),進(jìn)而在有機(jī)光伏器件、有機(jī)場(chǎng)效應(yīng)晶體管、有機(jī)發(fā)光二極管等領(lǐng)域具有廣泛的應(yīng)用。通過(guò)調(diào)節(jié)全氟酞菁銅分子的排列和晶體結(jié)構(gòu),可以進(jìn)一步改善其光電性質(zhì),提升器件的性能。本文分析了全氟酞菁銅納米線的形貌、結(jié)構(gòu)、化學(xué)成分以及光學(xué)性質(zhì),并且基于密度泛函理論(DFT)計(jì)算了納米線中相鄰分子的相互作用和磁學(xué)性質(zhì)。研究工作主包括以下幾方面內(nèi)容:第一,利用有機(jī)氣相沉積法在低溫區(qū)制備的全氟酞菁銅納米線的直徑約50納米,高溫區(qū)形成帶狀晶體寬度約為300納米,長(zhǎng)度達(dá)到微米/里面量級(jí)。能量分散譜(EDS)結(jié)果顯示全氟酞菁銅分子主要元素為C、N、F和Cu,X射線光電子能譜(XPS)和傅里葉紅外變換光譜(FTIR)分析了納米線的結(jié)合能、鍵能和官能團(tuán),證明全氟酞菁銅分子在高溫加熱后并沒(méi)有發(fā)生分解。第二,X射線衍射圖譜(XRD)顯示全氟酞菁銅納米線的主要衍射峰位于20=6.34°,6.60°,7.04°和27.74°,其晶胞參數(shù)為a=16.360 A,b=3.758 A,c=29.123 A,α=90°, β=121.6°,γ=90°,屬于單斜晶系,P2空間群,命名為η-F16CuPc。相比p-F16CuPc,納米線中分子柱內(nèi)相鄰分子之間的Cu-Cu的距離更小。第三,基于密度泛函理論(DFT)計(jì)算結(jié)果發(fā)現(xiàn)全氟酞菁銅納米線的交換相互作用為JDFT~-1K,表現(xiàn)為反鐵磁性,相比β相(J=-0.02 K),具有更強(qiáng)的相互作用。紫外-可見(jiàn)圖譜(UV-vis)顯示全氟酞菁銅納米線在可見(jiàn)光區(qū)域存在高能量最大峰(~622 nm)和低能量最大峰(~784 nm),對(duì)比p相全氟酞菁銅有明顯藍(lán)移,其在Q帶的吸收峰展寬增加~10 nnl。第四,通過(guò)改變前軀體溫度我們發(fā)現(xiàn),全氟酞菁銅晶體依然保持線狀形貌,納米線的尺寸隨著前軀體溫度的升高而逐漸增加。全氟酞菁銅納米線結(jié)晶性隨著溫度的升高增加。不同退火溫度會(huì)引起全氟酞菁銅納米線晶型轉(zhuǎn)變,70℃時(shí)對(duì)應(yīng)著η-到α-相的轉(zhuǎn)變,276℃時(shí)對(duì)應(yīng)著α相向β相的轉(zhuǎn)變,500℃對(duì)應(yīng)β相的完全轉(zhuǎn)變。η和α相的全氟酞菁銅均是線狀結(jié)構(gòu),而p相的全氟酞菁銅晶體是帶狀。通過(guò)對(duì)全氟酞菁銅納米線晶體結(jié)構(gòu),光學(xué)性質(zhì)以及晶型轉(zhuǎn)變的研究,將進(jìn)一步促進(jìn)全氟酞菁銅納米線在有機(jī)光電子領(lǐng)域,例如:有機(jī)太陽(yáng)能電池,有機(jī)場(chǎng)效應(yīng)晶體管等的應(yīng)用。
[Abstract]:Phthalocyanine is an organic semiconductor material with large heterocyclic planar structure containing 18 蟺 electrons. Due to its smaller molecular spacing, perfluorinated copper phthalocyanine has excellent optical and electrical properties, and has been widely used in organic photovoltaic devices, airfield effect transistors, organic light-emitting diodes and so on. By adjusting the molecular arrangement and crystal structure of perfluorinated copper phthalocyanine, the photoelectric properties and the properties of the devices can be further improved. The morphology, structure, chemical composition and optical properties of perfluorinated copper phthalocyanine nanowires were analyzed. The interaction and magnetic properties of adjacent molecules in the nanowires were calculated based on density functional theory (DFT). The main work includes the following aspects: first, the diameter of perfluorinated copper phthalocyanine nanowires prepared by organic vapor deposition in low temperature region is about 50 nm, and the width of zonal crystal in high temperature region is about 300 nm. The length is of the order of micron / inner order. The results of energy dispersive spectroscopy (EDS) show that the main elements of perfluorinated copper phthalocyanine are Con NZF and Cu X ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The binding energy, bond energy and functional groups of nanowires are analyzed. It is proved that the perfluorinated copper phthalocyanine does not decompose after heating at high temperature. The main diffraction peaks of perfluorinated copper phthalocyanine nanowires were found to be at 206.34 擄(6.60 擄) 7.04 擄and 27.74 擄. The cell parameters of the nanowires were as follows: a ~ (16) ~ (360) A ~ (16) A ~ (2) A ~ (1) C _ (3) C _ (29.123) A, 偽 ~ (90 擄), 尾 ~ (121.6) 擄, 緯 ~ (90) 擄, belongs to the monoclinic system P _ (2) space group and is named 畏 -F _ (16) Cu _ (Pc). Compared with p-F16CuPc, the distance between the adjacent molecules in the nanowires is smaller than that between the adjacent molecules in the nanowires. Thirdly, based on density functional theory (DFT), it is found that the exchange interaction of perfluorinated copper phthalocyanine nanowires is JDFT-1K, which is antiferromagnetic. UV-vis-vis spectra showed that perfluorinated copper phthalocyanine nanowires had a high energy maximum peak of 622 nm) and a low energy maximum peak of 784 nm 路m ~ (-1) in the visible region. Compared with p-phase perfluorophthalocyanine copper, the absorption peak of perfluorinated copper phthalocyanine increased by 10 nl. Fourthly, by changing the temperature of the precursor, we found that the morphology of the perfluorinated copper phthalocyanine crystal remains linear, and the size of the nanowires increases with the increase of the temperature of the precursor. The crystallinity of perfluorinated copper phthalocyanine nanowires increases with the increase of temperature. The nanowires transformation of perfluorophthalocyanine copper at 70 鈩,
本文編號(hào):1866212
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1866212.html
最近更新
教材專著