多組分脂質體—納米粒進入巨型囊泡的跨膜運輸研究
發(fā)布時間:2018-05-03 00:37
本文選題:多組分脂質體-納米粒 + 巨型囊泡; 參考:《山西師范大學》2017年碩士論文
【摘要】:多組分脂質體-納米粒是一種新穎的基因載體,是由一定濃度的多組分脂質體囊泡和納米粒分散在溶液中自組裝形成的具有納米粒核心和脂質外殼的新型組裝體,內部的核由聚合物組成,相當于一個納米粒子,外部的殼由脂質層組成。多組分脂質體-納米粒載體可將目的基因送入靶細胞內,然后將目的基因釋放出來,在生物醫(yī)學的基因治療領域是很受歡迎的。巨型囊泡是卷成球殼的脂質雙層,被廣泛用于研究脂質雙層的性質。本文使用自洽場理論對多組分脂質體-納米粒進入巨型囊泡的跨膜運輸進行了研究。第一章,介紹了細胞膜的組成功能和特性,人工合成膜,多組分脂質體-納米粒的結構、制備及應用以及納米粒與生物膜的作用方式,同時介紹了在細胞膜體系中自洽場理論模型的應用。本文采用自洽場方法來研究細胞膜的自組織行為。第二章,對單個多組分脂質體-納米粒進入巨型囊泡膜的跨膜運輸進行了研究。討論了在內吞過程中,多組分脂質體的頭體積分數(shù)和納米粒的半徑對膜形貌變化的影響,還研究了在準靜態(tài)下能量壁壘的不同。當脂質種類A和B的頭體積分數(shù)(f_(h A),f_(h B))相同時,得到亞穩(wěn)中間體IMI相,H_(II)相,stalk相和HD相,而當脂質種類A和B的頭體積分數(shù)不同時,形成了亞穩(wěn)中間體stalk相,IMI相,SUV相,H_(II)相和HD相。然而,納米粒的半徑(R_p)對膜形貌的影響很小。我們運用自由能曲線定量分析了最小自由能路徑。通過比較自由能,最優(yōu)參數(shù)結合是f_(h A)=f_(h B)=0.2,f_(h A)=0.2,f_(h B)=0.55,R_p=0.35R_g。結果表明,單個多組分脂質體-納米粒與巨型囊泡的相互作用是一個自發(fā)過程,并且在相互作用的過程中,形成亞穩(wěn)中間體時需要克服能量壁壘。第三章,對多個多組分脂質體-納米粒進入巨型囊泡膜的跨膜運輸進行了研究。討論了在內吞過程中,多組分脂質體-納米粒的個數(shù)和多組分脂質體-納米粒的聚集形式對膜形貌變化的影響,還研究了在準靜態(tài)下能量壁壘的不同。我們運用自由能曲線定量分析了最小自由能路徑。分析自由能曲線表明,多個多組分脂質體-納米粒與巨型囊泡的相互作用是一個自發(fā)過程,并且在相互作用的過程中,形成亞穩(wěn)中間體時需要克服能量壁壘。第四章,對多組分脂質體-納米粒進入巨型囊泡膜的跨膜運輸研究進行了總結。
[Abstract]:Multicomponent liposome-nanoparticle is a novel gene carrier. It is a new type of assembly with nanoparticles core and lipid shell which is composed of multi-component liposome vesicles and nanoparticles dispersed in solution. The inner nucleus consists of a polymer, which is equivalent to a nanometer particle, and the outer shell is composed of a lipid layer. Multicomponent liposome-nanoparticles vector can transfer the target gene into the target cells and then release the target gene, which is very popular in the field of biomedical gene therapy. Giant vesicles are bilayer lipids rolled into spherical shells, which are widely used to study the properties of lipid bilayers. In this paper, the transmembrane transport of multicomponent liposomes into giant vesicles was studied by using self consistent field theory. In the first chapter, the composition and characteristics of cell membrane, the synthetic membrane, the structure of multicomponent liposome and nanoparticles, the preparation and application, and the interaction between nanoparticles and biofilm are introduced. At the same time, the application of self-consistent field theory model in cell membrane system is introduced. Self-organizing behavior of cell membrane is studied by self-consistent field method. In chapter 2, the transmembrane transport of single multicomponent liposome-nanoparticles into giant vesicle membrane was studied. The effects of the head volume fraction of multicomponent liposomes and the radius of nanoparticles on the changes of membrane morphology during the process of endocytosis were discussed. The differences of energy barriers in quasi-static state were also studied. When the head volume fraction of lipids A and B is the same, the metastable intermediates IMI phase and IMI phase are obtained. When the head volume fraction of lipid species A and B is different, the metastable intermediates, stalk phase, IMI phase, SUV phase, and HD phase, are obtained. However, the radius of nanoparticles has little effect on the morphology of the film. We use the free energy curve to quantitatively analyze the minimum free energy path. By comparing the free energy, the best parameter combination is: the number of A)=f_(h is 0.2g / s. The results show that the interaction between single multicomponent liposome-nanoparticles and giant vesicles is a spontaneous process, and in the process of interaction, energy barriers should be overcome in the formation of metastable intermediates. In chapter 3, the transmembrane transport of multi-component liposomes-nanoparticles into giant vesicles was studied. The effects of the number of multicomponent liposome-nanoparticles and the aggregation form of multicomponent liposome-nanoparticles on the morphology of the membrane were discussed in the process of endocytosis. The differences of energy barriers in quasi-static state were also studied. We use the free energy curve to quantitatively analyze the minimum free energy path. The free energy curves show that the interaction between multi-component liposome-nanoparticles and giant vesicles is a spontaneous process, and energy barriers should be overcome in the process of forming metastable intermediates. In chapter 4, the transmembrane transport of multicomponent liposomes-nanoparticles into giant vesicles was summarized.
【學位授予單位】:山西師范大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TB383.1
【參考文獻】
相關期刊論文 前2條
1 吉順莉;李博;李貞;王成潤;金一;戈延茹;;脂質體納米粒組裝體作為藥物載體的研究進展[J];江蘇大學學報(醫(yī)學版);2010年02期
2 張啟義;;Pair interaction of bilayer-coated nanoscopic particles[J];Chinese Physics B;2009年02期
相關碩士學位論文 前1條
1 張星;不同形狀納米粒子與生物膜相互作用的研究[D];山西師范大學;2014年
,本文編號:1836189
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1836189.html
最近更新
教材專著