基于輻照技術(shù)的功能性納米材料制備及其在污染控制中的應(yīng)用
本文選題:高能電子束 + 納米材料 ; 參考:《中國(guó)科學(xué)技術(shù)大學(xué)》2017年博士論文
【摘要】:工業(yè)污水的違規(guī)排放以及農(nóng)藥、化肥的濫用成為環(huán)境污染的主要來(lái)源,嚴(yán)重危害了人類(lèi)的健康。納米材料具備優(yōu)異的電、力、磁、光學(xué)和化學(xué)性能,經(jīng)過(guò)功能化修飾的納米粒子又被賦予了許多新的優(yōu)良屬性,因此在化工、電子、生物、醫(yī)學(xué)等多個(gè)領(lǐng)域都有廣泛的應(yīng)用前景。近年來(lái),科學(xué)家們將納米技術(shù)應(yīng)用于環(huán)境污染治理領(lǐng)域,并對(duì)環(huán)境污染物的去除取得了很好的效果。傳統(tǒng)的納米材料制備方法繁雜、成本高、耗時(shí)長(zhǎng),而高能電子束輻照技術(shù)具有高效便捷并可以大批量處理反應(yīng)物的優(yōu)點(diǎn),因此在納米材料的制備方面受到越來(lái)越多的關(guān)注。本論文主要基于高能電子束輻照技術(shù)對(duì)納米材料進(jìn)行輻照改性,制備出不同的功能化納米材料,并將其應(yīng)用于環(huán)境污染物的去除領(lǐng)域中。本論文的主要研究?jī)?nèi)容如下:1.接觸法合成硫酸通常使用硅藻土作為釩催化劑載體,而天然硅藻土的孔徑小、堵塞嚴(yán)重,降低了反應(yīng)物在孔道內(nèi)的傳質(zhì)速度。在論文的第二章中,我們利用高能電子束輻照技術(shù)對(duì)天然硅藻土進(jìn)行輻照處理,改善了硅藻土的孔徑分布,從而提高了硅藻土作為催化劑載體的品質(zhì)。研究結(jié)果表明,高能電子束在輻照硅藻土的過(guò)程中所具有的濺射效應(yīng)、庫(kù)倫爆炸和熱效應(yīng)可以有效增大硅藻土的孔徑。對(duì)改性前后的硅藻土進(jìn)行比表面積分析,并對(duì)催化劑的催化性能進(jìn)行測(cè)試,結(jié)果表明改性后的硅藻土孔道被疏通,因此具有較大的孔徑,有利于提高硫酸合成過(guò)程中的二氧化硫與空氣在硅藻土孔道中的傳質(zhì)速度和反應(yīng)物之間的接觸面積,從而提高了硅藻土在硫酸合成過(guò)程中作為催化劑載體的催化效率。2.傳統(tǒng)的葉面肥在施肥后只有小部分可以被植物吸收,而未被利用的大部分肥料則是隨著雨水沖刷、淋溶和蒸發(fā)作用進(jìn)入水體、空氣和土壤中,不僅造成了肥效的流失,還會(huì)導(dǎo)致嚴(yán)重的環(huán)境污染,因此需要制備出在植物葉片上附著能力強(qiáng)、利用率高的新型葉面肥。在論文的第三章中,我們利用高能電子束輻照技術(shù)對(duì)天然納米材料-凹凸棒土進(jìn)行改性,提高其分散性和比表面積。然后再將秸稈灰與改性后的凹凸棒土按一定質(zhì)量比例進(jìn)行復(fù)合,從而制備出一種新型的葉面肥控失劑。結(jié)果表明,所制備的葉面肥控失劑具有多孔微納網(wǎng)絡(luò)結(jié)構(gòu)和較大的比表面積,可以吸附大量的氮肥,并將其固定在自身的網(wǎng)絡(luò)結(jié)構(gòu)體系中。在葉面肥的施肥過(guò)程中,此網(wǎng)絡(luò)結(jié)構(gòu)可以被植物葉片上的微觀結(jié)構(gòu)所阻擋,從而保留在葉片上,不易流失,提高了葉面肥的利用率。3.鐵在植物的生長(zhǎng)發(fā)育過(guò)程中必不可少,如果出現(xiàn)缺鐵情況則會(huì)導(dǎo)致作物出現(xiàn)黃葉病,從而影響作物的品質(zhì)和產(chǎn)量。與根施鐵肥相比,鐵元素葉面肥能快速補(bǔ)充二價(jià)鐵離子,維持植物的正常生長(zhǎng)發(fā)育。而葉面肥的易流失和亞鐵離子的不穩(wěn)定性是降低鐵元素葉面肥肥效的關(guān)鍵問(wèn)題之一。因此,需要制備出一種新型的鐵元素葉面肥,使其能夠有效地固定亞鐵離子,延緩其氧化速率,提高亞鐵離子的利用效率。在論文的第四章內(nèi)容中,我們將微晶纖維素氧化改性,得到表面含有大量羧基的纖維素,而羧酸根與二價(jià)鐵離子之間的靜電作用能夠固定二價(jià)鐵離子,從而形成兩者的復(fù)合物。再向復(fù)合物體系中加入改性的凹凸棒土,最終制備出控釋鐵元素葉面肥。結(jié)果表明,該方法可以有效增強(qiáng)鐵元素在作物葉片上的附著能力并延緩亞鐵離子的氧化速率。此外,利用羧酸根對(duì)pH的敏感性,在酸性條件下會(huì)與氫離子結(jié)合從而解離出二價(jià)鐵離子,因此可以通過(guò)調(diào)節(jié)溶液的pH值來(lái)控制鐵元素的釋放量,提高葉面肥的利用效率。該方法所制備的控釋型鐵元素葉面肥可以滿(mǎn)足作物不同生長(zhǎng)時(shí)期對(duì)鐵元素的需求,促進(jìn)作物平衡生長(zhǎng)。4.太陽(yáng)光中只有2%-5%的紫外光,導(dǎo)致了以紫外光激發(fā)的光催化劑的效率較低,限制了光催化劑在污染物降解領(lǐng)域中的應(yīng)用。因此,制備出可以利用可見(jiàn)光的光催化劑來(lái)降解有機(jī)污染物受到越來(lái)越多的關(guān)注。論文的第五章提供了一種基于高能電子束輻照技術(shù)制備的可以降解有機(jī)磷農(nóng)藥的光催化劑(MnO2/C復(fù)合物)的制備方法。高能電子束輻照水溶液,能夠產(chǎn)生水合電子、電子和氫自由基等具有還原性粒子,可以還原MnO4-,制備出MnO2納米粒子。同時(shí),高能電子束具有的熱效應(yīng)和濺射效應(yīng)還可以使氧化石墨表面變得更加粗糙,通過(guò)MnO2表面羥基與石墨表面的含氧基團(tuán)之間形成的氫鍵將MnO2納米顆粒固定在石墨表面。實(shí)驗(yàn)結(jié)果表明,該方法制備的MnO2/C復(fù)合材料具有優(yōu)異的分散性和光催化屬性,可以在太陽(yáng)光的激發(fā)下將草甘膦降解為無(wú)毒的無(wú)機(jī)小分子。5.醫(yī)療廢棄物的違規(guī)處理導(dǎo)致環(huán)境中出現(xiàn)大量的抗生素殘留,導(dǎo)致細(xì)菌耐藥性的增加,嚴(yán)重危害人類(lèi)的健康。在論文的第六章中,我們通過(guò)高能電子束輻照技術(shù)直接處理醫(yī)療廢棄物中的抗生素殘留,將抗生素在原位進(jìn)行輻照降解,并探討了抗生素的降解效率受高能電子束輻照劑量、抗生素溶液的初始濃度、自由基清除劑以及其他共存物質(zhì)的影響。研究結(jié)果表明,高能電子束輻照對(duì)阿莫西林、氧氟沙星和頭孢拉定的降解效率分別為97.02%,97.61%和96.87%。高效液相色譜-質(zhì)譜和紅外光譜分析表明,阿莫西林,氧氟沙星和頭孢拉定經(jīng)過(guò)降解后產(chǎn)生的降解產(chǎn)物相似,均為直鏈烷烴和無(wú)機(jī)物小分子。此外,在本章中還對(duì)抗生素的降解機(jī)理進(jìn)行了進(jìn)一步的探討,研究發(fā)現(xiàn),在電子束輻照降解抗生素的過(guò)程中,·OH起主導(dǎo)作用。
[Abstract]:The illegal emission of industrial sewage and the abuse of pesticides and chemical fertilizers have become the main source of environmental pollution, which seriously endangers human health. Nanomaterials have excellent electrical, force, magnetic, optical and chemical properties. The functionalized nanoparticles have been given many new excellent properties, so they are in chemical, electronic, biological, medical, and so on. In recent years, scientists have applied nanotechnology to the field of environmental pollution control, and have achieved good results in the removal of environmental pollutants. The traditional preparation methods of nanomaterials are complex, high cost and time-consuming, and high energy electron beam radiance technology is efficient and convenient and can be treated in large quantities. As a result, more and more attention has been paid to the preparation of nanomaterials. This paper is mainly based on irradiation modification of nanomaterials based on high energy electron beam irradiation technology. Different functionalized nanomaterials have been prepared and applied to the removal domain of environmental pollutants. The main contents of this paper are as follows: 1. contact Diatomite is usually used as a carrier of vanadium catalyst for the synthesis of sulfuric acid by method. The pore size of the natural diatomite is small and the blockage is serious. The mass transfer rate of the reactant in the channel is reduced. In the second chapter of the paper, we irradiate natural diatomite by high energy electron beam irradiation technology to improve the pore size distribution of the diatomite, thus improving the pore size distribution of the diatomite. The quality of diatomite as a catalyst carrier. The results show that the effect of high energy electron beam in the process of irradiation of diatomite, the explosion and thermal effect of Kulun can effectively increase the pore size of diatomite. The diatomite channel after the modification is dredged, so it has a larger aperture, which is beneficial to improve the mass transfer rate of sulfur dioxide and air in the diatomite channel and the contact area between the reactant in the process of sulphuric acid synthesis, thus improving the traditional leaf of the diatomite as the catalyst carrier of the catalyst in the process of sulphuric acid synthesis,.2.. Only a small portion of the fertilizer can be absorbed by plants after fertilization, and most of the fertilizer that is not used will be washed, leaching and evaporating into the water body. In the air and soil, it not only causes the loss of the fertilizer efficiency, but also causes serious environmental pollution. Therefore, the ability to attach to the plant leaves is strong and the utilization rate is high. In the third chapter of the paper, we use high energy electron beam irradiation technique to modify the natural nano material attapulgite soil to improve its dispersibility and specific surface area. Then, the straw ash and the modified attapulgite soil are compounded to a certain mass ratio, and a new type of leaf fertilizer control loss agent is prepared. The results show that the leaf fertilizer control agent has a porous micronano network structure and a larger specific surface area. It can adsorb a large amount of nitrogen fertilizer and immobilate it in its own network structure. In the process of fertilization, the network structure can be blocked by the microstructure on the leaves of plant, so it is not easy to keep on the leaf. Loss, increasing the utilization of foliar fertilizer,.3. iron is essential in the growth and development of plants. If iron deficiency occurs, it will lead to yellow leaf disease and affect the quality and yield of crops. Compared with the root fertilizer, iron foliage fertilizer can quickly supplement two valent iron ions and maintain normal growth and development of plants. The easy loss of fertilizer and the instability of ferrous ions are one of the key problems in reducing the efficiency of iron foliar fertilizer. Therefore, a new type of iron foliar fertilizer is needed to effectively immobilization of ferrous ions, delay its oxidation rate and improve the utilization efficiency of ferrous ions. In the fourth chapter of the paper, we will microcrystalline Cellulose is modified to obtain cellulose with a large number of carboxyl groups on the surface, and the electrostatic interaction between carboxyacid and two valence iron ions can fix two valence iron ions, thus forming a compound of both. It can enhance the adhesion ability of iron on the crop leaves and delay the oxidation rate of ferrous ions. In addition, using the sensitivity of the carboxylic acid roots to pH, the two valence iron ions are dissociated from the hydrogen ions under the acidic condition. Therefore, the release of iron elements can be controlled by adjusting the pH value of the solution, and the utilization efficiency of the foliar fertilizer can be improved. The controlled release iron element leaf fertilizer prepared by this method can meet the demand for iron in different growth period of the crop, promote the UV light of only 2%-5% in the.4. solar light, which leads to the low efficiency of the photocatalyst excited by ultraviolet light, which restricts the application of photocatalyst in the field of pollutant degradation. Therefore, the preparation of the photocatalyst in the field of pollutant degradation is prepared. The fifth chapter of the paper provides a preparation method of Photocatalyst (MnO2/C complex) that can degrade organophosphorus pesticides based on high energy electron beam irradiation technology. The electrons and hydrogen radicals, such as the reductive particles, can reduce the MnO4- and prepare the MnO2 nanoparticles. At the same time, the thermal effect and sputtering effect of the high energy electron beam can make the surface of the graphite oxide more rough. The MnO2 nanoparticles are fixed to the stone by the hydrogen bond formed between the hydroxyl group of the MnO2 surface and the oxygen containing groups on the graphite surface. The experimental results show that the MnO2/C composites prepared by this method have excellent dispersibility and photocatalytic properties. The degradation of glyphosate to non-toxic inorganic small molecule.5. medical waste under the excitation of sunlight can lead to a large number of anti biotic residues in the environment, which leads to the increase of bacterial resistance. In the sixth chapter of the paper, we directly treated the antibiotic residues in medical waste by high energy electron beam irradiation technology, irradiated the antibiotics in situ, and discussed the degradation efficiency of antibiotics by high energy electron beam irradiation dose, initial concentration of anti raw solution, free radical scavenger and The results showed that the degradation efficiency of amoxicillin, ofloxacin and Cefradine was 97.02%, 97.61% and 96.87%. high performance liquid chromatography - mass spectrometry and infrared spectrum analysis showed that amoxicillin, ofloxacin and Cefradine were similar in degradation products after degradation. In addition, the mechanism of the degradation of antibiotics was further discussed in this chapter. It was found that OH played a leading role in the degradation of antibiotics by electron beam irradiation.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:X505;TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孟弘;納米材料制備研究進(jìn)展[J];礦產(chǎn)保護(hù)與利用;2003年04期
2 ;有序聚集結(jié)構(gòu)組裝和發(fā)光納米材料制備研究[J];光機(jī)電信息;2010年01期
3 張喜梅,陳玲,李琳,郭祀遠(yuǎn);納米材料制備研究現(xiàn)狀及其發(fā)展方向[J];現(xiàn)代化工;2000年07期
4 劉珍,梁偉,許并社,市野瀨英喜;納米材料制備方法及其研究進(jìn)展[J];材料科學(xué)與工藝;2000年03期
5 邵慶輝,古國(guó)榜,章莉娟;微乳化技術(shù)在納米材料制備中的應(yīng)用研究[J];化工新型材料;2001年07期
6 段學(xué)臣,曾真誠(chéng),高桂蘭;納米材料制備方法和展望[J];稀有金屬與硬質(zhì)合金;2001年04期
7 吳青,汪炯;納米材料制備及其應(yīng)用[J];浙江化工;2001年02期
8 王結(jié)良,梁國(guó)正,趙雯,呂生華;納米材料制備新技術(shù)研究進(jìn)展[J];河南化工;2003年10期
9 張登松,施利毅;納米材料制備的若干新進(jìn)展[J];化學(xué)工業(yè)與工程技術(shù);2003年05期
10 楊玉華,王九思,許力;納米材料制備方法簡(jiǎn)述[J];甘肅水利水電技術(shù);2004年01期
相關(guān)會(huì)議論文 前10條
1 李春忠;;低維納米材料制備及應(yīng)用過(guò)程的工程特征[A];上海市顆粒學(xué)會(huì)2005年年會(huì)論文集[C];2005年
2 張春;郭瑞斌;孟淑娟;張俊曉;莫尊理;;磁場(chǎng)在納米材料制備中的應(yīng)用及影響作用[A];中國(guó)化學(xué)會(huì)第27屆學(xué)術(shù)年會(huì)第04分會(huì)場(chǎng)摘要集[C];2010年
3 翁小樂(lè);吳忠標(biāo);;超臨界水流動(dòng)式納米材料制備技術(shù)[A];第七屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(第2分冊(cè))[C];2010年
4 施雨湘;;納米材料制備加工研究進(jìn)展[A];新世紀(jì)科技與湖北經(jīng)濟(jì)發(fā)展——2001首屆湖北科技論壇論文集[C];2001年
5 劉雪峰;涂銘旌;;納米材料制備中磨介的配比研究[A];2002年材料科學(xué)與工程新進(jìn)展(上)——2002年中國(guó)材料研討會(huì)論文集[C];2002年
6 李學(xué)良;耿學(xué)紅;;摻加鉻的氮化鉬納米材料制備及超電容性能[A];第十三次全國(guó)電化學(xué)會(huì)議論文摘要集(下集)[C];2005年
7 鄧忠民;朱晨;洪友士;;SPD納米材料制備機(jī)理及其力學(xué)特性[A];力學(xué)與西部開(kāi)發(fā)會(huì)議論文集[C];2001年
8 秦高梧;;軟磁納米材料制備及其薄膜復(fù)合磁導(dǎo)率特性[A];2012中國(guó)功能新材料學(xué)術(shù)論壇暨第三屆全國(guó)電磁材料及器件學(xué)術(shù)會(huì)議論文摘要集[C];2012年
9 孫振華;王;;陳雪松;蘇黨生;;功能導(dǎo)向的金屬基雜化納米材料制備與性能研究[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第4分會(huì)場(chǎng)摘要集[C];2012年
10 潘家禎;崔寧;;用超高壓微射流技術(shù)制備納米級(jí)材料[A];納微粉體制備與應(yīng)用進(jìn)展——2002年納微粉體制備與技術(shù)應(yīng)用研討會(huì)論文集[C];2002年
相關(guān)重要報(bào)紙文章 前1條
1 記者 李大慶;科學(xué)家研討材料未來(lái)發(fā)展新方向[N];科技日?qǐng)?bào);2000年
相關(guān)博士學(xué)位論文 前7條
1 李偉利;氧化鋅納米材料制備及其環(huán)境分析應(yīng)用研究[D];湖南大學(xué);2015年
2 閆石;銀納米材料制備與生長(zhǎng)規(guī)律的同步輻射研究[D];北京科技大學(xué);2017年
3 王敏;基于輻照技術(shù)的功能性納米材料制備及其在污染控制中的應(yīng)用[D];中國(guó)科學(xué)技術(shù)大學(xué);2017年
4 劉穎;基于明膠的納米材料制備及性能研究[D];南京理工大學(xué);2011年
5 翟永愛(ài);離子液體的制備及其在納米材料制備方面的應(yīng)用[D];吉林大學(xué);2009年
6 馮海濤;SnO_2納米材料制備與微波吸收性能研究[D];蘭州大學(xué);2010年
7 趙明偉;離子液體參與構(gòu)建的分子有序聚集體及在納米材料制備中的應(yīng)用[D];山東大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 蘇子健;基于AVR單片機(jī)的納米材料制備設(shè)備控制器[D];燕山大學(xué);2016年
2 陳杰;含鐵高分子納米材料制備及放射治療腫瘤細(xì)胞模型研究[D];蘇州大學(xué);2016年
3 張曉霞;功能性納米材料制備及其質(zhì)譜分析應(yīng)用研究[D];南京大學(xué);2014年
4 楊龍;新型光響應(yīng)表面活性劑合成及其在納米材料制備中的應(yīng)用[D];華僑大學(xué);2016年
5 徐哲;基于生物模板的納米材料制備和性能表征[D];華東師范大學(xué);2011年
6 程樹(shù)青;過(guò)渡金屬氧化物納米材料制備及其電化學(xué)性質(zhì)研究[D];安慶師范學(xué)院;2015年
7 李蕊;基于環(huán)己二胺和1,2-二苯基乙二胺手性?xún)捎H性小分子化合物的合成及在納米材料制備中的應(yīng)用[D];蘇州大學(xué);2013年
8 李朝陽(yáng);鋁團(tuán)簇的理論計(jì)算以及金屬納米材料制備和性能的初步研究[D];中國(guó)工程物理研究院北京研究生部;2003年
9 袁杰;離子液體參與構(gòu)筑的囊泡體系及其在納米材料制備中的應(yīng)用[D];山東大學(xué);2011年
10 徐志奎;梯度聚合物的合成表征及在納米材料制備中的應(yīng)用[D];青島科技大學(xué);2008年
,本文編號(hào):1830859
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1830859.html