基于多功能納米探針的三種電化學(xué)免疫傳感器的研究
本文選題:電分析化學(xué) + 電化學(xué)免疫傳感器 ; 參考:《西北大學(xué)》2017年碩士論文
【摘要】:電化學(xué)免疫傳感器不僅具有免疫分析的特異性,還具有電分析化學(xué)簡便、靈敏等優(yōu)勢,能將抗原-抗體相互作用信息轉(zhuǎn)化為易測的電信號(hào),已成為電分析化學(xué)最熱門的研究領(lǐng)域之一。納米材料的飛速發(fā)展,不僅為抗體/抗原在電極表面的固載提供了良好的基體,還可通過多功能納米探針為高靈敏電化學(xué)免疫傳感器的構(gòu)建提供新穎的信號(hào)放大策略,從而改善免疫傳感器的分析性能。本文構(gòu)建了三種基于多功能納米探針的新型電化學(xué)免疫傳感器,分別用于人免疫球蛋白(IgG)和癌胚抗原(CEA)的檢測,并得到了較好的分析性能,具體工作如下:(1)基于金、銀納米簇的電化學(xué)免疫傳感器。該傳感器利用銀納米簇固載抗體,金納米簇標(biāo)記二抗并作為晶核誘導(dǎo)銀納米粒子生成,然后進(jìn)行電化學(xué)還原二次增強(qiáng)銀的沉積,借助沉積銀的電氧化信號(hào)達(dá)到定量檢測CEA的目標(biāo)。在優(yōu)化實(shí)驗(yàn)條件下,該免疫傳感器的線性范圍是0.01pg·mL-1~100 ng·mL-1,檢出限為1 fg·mL-1。與其他一些基于金、銀納米粒子的傳感器相比,該免疫傳感器利用超小尺寸的納米粒子(納米簇)固載和標(biāo)記抗體,提高了抗體的有效利用率;通過金納米簇對(duì)AgN03原位還原和電化學(xué)還原雙重作用來放大信號(hào),提高了傳感器的靈敏度。(2)基于多功能銀納米探針與Fe304磁性納米粒子的免標(biāo)記電化學(xué)免疫傳感器。該傳感器通過將固載抗體的Fe304磁性納米粒子吸引到預(yù)先電沉積了銀納米粒子的磁性電極上構(gòu)建而成。沉積在電極表面的銀納米粒子不但增強(qiáng)了界面導(dǎo)電性,而且可作為電化學(xué)探針提供信號(hào)源;Fe304磁性納米粒子不僅可通過氨基化處理負(fù)載大量抗體,還能利用其與磁性電極之間的磁力將抗體固定在電極表面。在最優(yōu)實(shí)驗(yàn)條件下,以IgG作為目標(biāo)分析物,該免疫傳感器的線性范圍為0.1 pg·mL-1~1.0 μg·mL-1,檢出限為0.05 pg·mL-1。該傳感器無需使用第二抗體,并且在構(gòu)建過程中利用了電沉積、磁性作用和化學(xué)交聯(lián)等固定方法,很大程度上保證了傳感器的穩(wěn)定性。(3)基于金納米棒的電荷標(biāo)記型電化學(xué)免疫傳感器。金納米棒表面通過巰基試劑自組裝實(shí)現(xiàn)電荷標(biāo)記和負(fù)載二抗的功能。以碳納米管和殼聚糖復(fù)合物(CNTs-Chit)為基底將癌胚抗原抗體交聯(lián)在基體電極表面,通過夾心型免疫反應(yīng)在電極表面組裝上金納米棒,利用Fe(CN)63-的電化學(xué)氧化還原信號(hào)研究界面靜電作用對(duì)電化學(xué)免疫傳感器分析性能的影響。金納米棒大的比表面積為荷負(fù)電(功能)分子的修飾和抗體的固定提供了平臺(tái)。在優(yōu)化實(shí)驗(yàn)條件下,該免疫傳感器檢測CEA的線性范圍為1 fg·mL-1~100ng·mL_1,檢出限為0.1fg·mL_1。該傳感器旨在探索通過電荷標(biāo)記構(gòu)建高靈敏電化學(xué)免疫傳感器的可能,從研究結(jié)果來看,傳感界面的靜電作用有助于改善免疫傳感器的分析性能。該傳感器相比其他基于Fe(CN)63-氧化還原信號(hào)的電化學(xué)免疫傳感器具有較低的檢出限。
[Abstract]:Electrochemical immunosensor not only has the specificity of immunological analysis, but also has the advantages of simple and sensitive electroanalytical chemistry, which can transform the information of antigen-antibody interaction into electrical signals that are easy to measure. It has become one of the hottest research fields in electroanalytical chemistry. The rapid development of nanomaterials not only provides a good substrate for the immobilization of antibodies / antigens on the electrode surface, but also provides novel signal amplification strategies for the construction of highly sensitive electrochemical immunosensors through multifunctional nano-probes. In order to improve the analytical performance of the immunosensor. In this paper, three novel electrochemical immunosensors based on multifunctional nanoprobes were constructed for the detection of human immunoglobulin (IgG) and carcinoembryonic antigen (CEA). Electrochemical immunosensor for silver nanoclusters. The sensor uses silver nanoclusters to immobilize antibodies and gold nanoclusters to label the second antibody and act as nuclei to induce the formation of silver nanoparticles, and then electrochemical reduction secondary enhancement of silver deposition. The target of quantitative detection of CEA is achieved by electrooxidation signal of deposited silver. Under the optimized experimental conditions, the linear range of the immunosensor was 0.01pg mL-1~100 ng mL -1, and the detection limit was 1fg mL -1. Compared with other sensors based on gold and silver nanoparticles, the immunosensor uses ultrasmall nanoparticles (nanoclusters) to immobilize and label antibodies, thus increasing the effective utilization rate of antibodies. In order to amplify the signal through the dual action of gold nanoclusters on AgN03 in situ reduction and electrochemical reduction, the sensitivity of the sensor is improved. The sensor is based on multifunctional silver nanoparticles and Fe304 magnetic nanoparticles. The sensor was constructed by attracting the Fe304 magnetic nanoparticles loaded with antibodies onto the magnetic electrode where silver nanoparticles were pre-deposited. The silver nanoparticles deposited on the electrode surface not only enhance the interfacial conductivity, but also provide a signal source for Fe304 magnetic nanoparticles, which can not only support a large number of antibodies through amination treatment. The antibody can also be immobilized on the surface of the electrode using the magnetic force between it and the magnetic electrode. Under the optimal experimental conditions, the linear range of the immunosensor was 0.1 PG mL-1~1.0 渭 g mL -1 and the detection limit was 0.05 PG mL -1 with IgG as the target analyte. The sensor does not need to use a second antibody and uses electrodeposition, magnetic interaction and chemical crosslinking in the construction process. The stability of the electrochemical immunosensor based on gold nanorods is largely guaranteed. The surface of gold nanorods can be labeled with charge and loaded with second antibody by self-assembly of thiol reagents. The carcinoembryonic antigen antibody was cross-linked on the surface of the matrix electrode using CNTs-Chit-based carbon nanotube and chitosan complex as the substrate. The gold nanorods were assembled on the electrode surface by sandwich immunoreaction. The effect of interface electrostatic action on the analytical performance of electrochemical immunosensor was studied by using the electrochemical redox signal of Fegna CNN 63-. The large specific surface area of gold nanorods provides a platform for the modification of charged (functional) molecules and the fixation of antibodies. Under the optimized experimental conditions, the linear range of CEA detected by the immunosensor was 1fg mL-1~100ng mLS _ 1, and the detection limit was 0.1fg mL _ 1. The aim of the sensor is to explore the possibility of constructing a highly sensitive electrochemical immunosensor by charge labeling. The results show that the electrostatic action of the sensing interface can improve the analytical performance of the immunosensor. Compared with other electrochemical immunosensors based on Fegna CNC 63-redox signal, the detection limit of this sensor is lower than that of other electrochemical immunosensors.
【學(xué)位授予單位】:西北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB383.1;TP212.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 湯琳,曾光明,黃國和,牛承崗;免疫傳感器用于環(huán)境中痕量有害物質(zhì)檢測的研究進(jìn)展[J];環(huán)境科學(xué);2004年04期
2 徐肖邢;尹凡;史愛武;張漪;;亞甲基藍(lán)為介體的甲胎蛋白免疫傳感器的研制及應(yīng)用[J];理化檢驗(yàn)(化學(xué)分冊);2006年12期
3 李庭;曾光明;湯琳;高慧;李建兵;;脂質(zhì)體免疫傳感器的研究進(jìn)展[J];分析化學(xué);2008年01期
4 劉繼超;姜鐵民;陳歷俊;趙長新;;電化學(xué)免疫傳感器在食品安全檢測中的研究進(jìn)展[J];中國食品添加劑;2011年01期
5 時(shí)巧翠;侯海祥;;基于電聚合作用的脂質(zhì)體免疫傳感器檢測血液中2,4-二氯苯氧乙酸[J];分析試驗(yàn)室;2011年09期
6 顏小飛;汪懋華;安冬;;基于叉指陣列微電極的阻抗免疫傳感器研究進(jìn)展[J];分析化學(xué);2011年10期
7 杜璋璋;吳秀玲;馬翠萍;馬洪軍;;基于脂質(zhì)體信號(hào)增強(qiáng)癌胚抗原電化學(xué)免疫傳感器的研究[J];分析試驗(yàn)室;2012年02期
8 許雙姐;吳根英;許賀;柳建設(shè);金利通;;石墨烯-殼聚糖復(fù)合物修飾電極構(gòu)建電化學(xué)免疫傳感器對(duì)1-芘丁酸的檢測研究[J];分析測試學(xué)報(bào);2012年12期
9 陳學(xué)梅;謝愛娟;孔泳;楊艷偉;丁小峰;周民;;基于聚吡咯修飾膨脹石墨電極的甲胎蛋白電化學(xué)免疫傳感器[J];分析化學(xué);2013年08期
10 呂鳴祥,方道斌,張杰;免疫傳感器與高分子活性膜[J];化工進(jìn)展;1990年05期
相關(guān)會(huì)議論文 前10條
1 章竹君;;集群標(biāo)記物納米粒子細(xì)胞免疫傳感器[A];中國化學(xué)會(huì)第十屆全國發(fā)光分析學(xué)術(shù)研討會(huì)論文集[C];2011年
2 趙華文;李原芳;黃承志;;基于表面共振光散射信號(hào)增強(qiáng)的免疫傳感器[A];第八屆全國發(fā)光分析暨動(dòng)力學(xué)分析學(xué)術(shù)研討會(huì)論文集[C];2005年
3 馬超;趙廣英;;免疫傳感器在食品安全快速檢測中的研究進(jìn)展[A];中國食品科學(xué)技術(shù)學(xué)會(huì)第五屆年會(huì)暨第四屆東西方食品業(yè)高層論壇論文摘要集[C];2007年
4 朱將偉;劉國艷;史賢明;;己烯雌酚的過氧化氫酶標(biāo)記及己烯雌酚免疫傳感器[A];中國食品科學(xué)技術(shù)學(xué)會(huì)第五屆年會(huì)暨第四屆東西方食品業(yè)高層論壇論文摘要集[C];2007年
5 朱俊杰;;納米材料構(gòu)建電化學(xué)免疫傳感器[A];中國化學(xué)會(huì)第26屆學(xué)術(shù)年會(huì)分析化學(xué)分會(huì)場論文集[C];2008年
6 趙潔;秦坯芽;胡效亞;楊占軍;;基于還原石墨烯的牛白介素-4無標(biāo)記電化學(xué)阻抗免疫傳感器[A];第八屆全國化學(xué)生物學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2013年
7 劉璇;雷建平;鞠q,
本文編號(hào):1806091
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1806091.html