碳量子點的制備及其在熒光分析中的應用研究
本文選題:碳量子點 + 熒光分析; 參考:《廣西大學》2017年碩士論文
【摘要】:碳量子點是近年來碳材料中的新星,它和傳統(tǒng)半導體量子點一樣擁有納米級的粒子尺寸、優(yōu)秀的電子傳導能力和極強的熒光,比傳統(tǒng)半導體量子點更有生物相容性,更容易實現表面官能化,制備過程更加簡單。碳量子點在生物學成像、光催化、太陽能電池和熒光分析領域都已經有所應用,具有比傳統(tǒng)半導體量子點更廣闊的發(fā)展?jié)摿Α.斍皩μ剂孔狱c的研究主要集中于N、S單摻或二元共摻碳量子點,對其它摻雜元素和三元共摻碳量子點的研究較少。對包覆碳量子點的制備方法及應用研究不足。缺少簡單高效合成熒光可調碳量子點的方法。碳量子點熒光分析目標主要集中于Fe3+和Hg2+,對其它分析目標(尤其是陰離子和中性分子)研究不足,熒光檢測機理探討不夠深入。針對上述研究背景,本研究在第三章中,使用水熱法制備N、S、P三元共摻碳量子點,再以共摻碳量子點為熒光探針,實現對Eu3+離子的檢測。此章節(jié)研究的意義在于填補了相關領域內對三元共摻碳量子點的研究的空白,創(chuàng)新性地建立了熒光分析Eu3+離子的檢測方法。在第四章中,先制備N摻雜碳量子點,再用對甲基磺憸化環(huán)糊精對其進行包覆,制備出β-環(huán)糊精包覆的碳量子點;包覆碳量子點的熒光強度會被F-離子增強,基于此原理開發(fā)了對F-離子的熒光分析新方法。此章節(jié)為包覆碳量子點的制備提供了新思路,拓展了碳量子點在檢測陰離子方面的應用,在眾多碳量子點檢測陽離子的研究中有特殊的意義。在第五章中,以鄰苯二胺和正丙醇為原料制備了發(fā)射光為黃光的碳量子點;基于黃光碳量子點和金納米粒子的熒光內濾效應,建立了檢測三聚氰胺的新方法。此章節(jié)研究的意義在于制備出了較少見的發(fā)射光為黃光的碳量子點,為制備熒光可調碳量子點邁出探索性的一步;開發(fā)的檢測方法體現了熒光內濾原理的靈活運用,對三聚氰胺的檢測范圍和國標使用的液相色譜法基本一致,具有操作簡便、檢測成本低等優(yōu)點。得到的結論有:(1)N、S、P三元共摻碳量子點的平均粒徑為20 nm;紫外可見吸收光譜在209 nm和342 nm處有明顯的吸收峰,分別對應共軛體系中的π-π*躍遷和表面態(tài)能級;X射線光電子能譜證實N、S、P與C都形成了化學鍵;紅外吸收光譜顯示碳量子點表面含有豐富的羥基、氨基和C=O、C-N、P-O、C-S結構。共摻碳量子點最大激發(fā)波長350 nm,最大發(fā)射波長443 nm,發(fā)射光為藍光,半峰寬77 nm,沒有基于激發(fā)光改變發(fā)射光的現象。共摻碳量子點檢測Eu3+線性范圍為4.878 μmol·L-1到33.33 μmol-L-1,線性方程為△F=10.2C-19.2,相關系數0.998,檢出限為0.367μmol·L-1,選擇性良好,在模擬廢水檢測Eu3+中平均回收率103.6%。(2)環(huán)糊精包覆碳量子點平均粒徑為50 nm;在215 nm處有紫外可見吸收峰,說明含有其含有大量π-π*鍵;X射線光電子能譜說明β-環(huán)糊精通過C-N-C結構與量子點碳骨架相連,形成包覆;紅外吸收光譜顯示碳量子點表面含有豐富的羥基、氨基和C=O、C=C、C-N、C-O-C等官能團。包覆碳量子點最大激發(fā)波長348 nm,最大發(fā)射波長462 nm,發(fā)射光為藍光,半峰寬92 nm,有基于激發(fā)光改變發(fā)射光的現象。檢測F-線性范圍27.62 μmol·L-1到544.6 μmol·L-1 線性方程為△F=0.383C-1.69,線性相關系數0.998,檢出限0.367 μmol·L-1,選擇性良好,在檢測牙膏中的F-離子實驗中平均誤差5.8%。(3)黃光碳量子點平均粒徑為30 nm;紫外可見吸收峰圖譜說明碳量子點含有π-π*鍵和表面態(tài)能級吸收;X射線光電子能譜顯示碳量子點含有C、N、O元素;紅外吸收光譜說明其表面有豐富的羥基、氨基和C=O、C=C、C-N、C-O-C結構。黃光碳量子點最大激發(fā)波長415 nm,最大發(fā)射廣西大學碩士學位論文 碳量子點的制備及其在熒光分析中的應用研究波長556 nm,半峰寬78 nm,發(fā)射光為黃光,CIE坐標為(0.45,0.56)。檢測三聚氰胺線性范圍為50.0 μmol·L-1到700.0 μmol·L-1,線性方程為△F=0.421C-22.3,線性相關系數 0.991,檢出限 5.808 μmol·L-1。
[Abstract]:Carbon quantum dots are new stars in carbon materials in recent years. Like the traditional semiconductor quantum dots, they have nanometer particle size, excellent electronic conductivity and strong fluorescence. It is more biocompatible than traditional semiconductor quantum dots. It is easier to realize surface functionalization and the preparation process is simpler. Carbon quantum dots are in biological imaging and light. Catalysis, solar cells and fluorescence analysis have been applied in the field, which has a wider potential than the traditional semiconductor quantum dots. The current research on carbon quantum dots is mainly focused on N, S single doped or two Co doped carbon quantum dots, and less research on other doped elements and three element Co doped points. Preparation of carbon quantum dots coated with carbon quantum dots. Methods and applications are insufficient. Lack of a simple and efficient method to synthesize fluoresceable carbon quantum dots. The target of fluorescence analysis of carbon quantum dots is mainly concentrated on Fe3+ and Hg2+. The study of other analytical targets (especially anions and neutral molecules) is insufficient and the mechanism of fluorescence detection is not deep enough. In this study, the third chapter is in this study. N, S, P three yuan Co doped carbon quantum dots are prepared by hydrothermal method, and then Co doped carbon quantum dots are used as fluorescence probes to detect Eu3+ ions. The significance of this chapter is to fill the gap in the study of three yuan Co doped carbon quantum dots in the related fields, and create a new method for the detection of Eu3+ ions in fluorescein analysis. In the fourth chapter, the first part of the study has been made. The N doped carbon quantum dots were prepared and coated with methyl sulfonated cyclodextrin. The carbon quantum dots coated with beta cyclodextrin were prepared. The fluorescence intensity of the coated carbon quantum dots would be enhanced by the F- ion. Based on this principle, a new method for the fluorescence analysis of F- ions was developed. This chapter provides a new idea for the preparation of carbon quantum dots. The application of carbon quantum dots in the detection of anions is of special significance in the study of cations by many carbon quantum dots. In the fifth chapter, the carbon quantum dots with yellow light emitting light are prepared by using o-phthalamine and propanol as raw materials, and the detection of cyanogen based on the fluorescence internal filtration effect of yellow carbon quantum dots and gold nanoparticles is established. The significance of this chapter is the preparation of a rare carbon quantum dot with yellow light emitting light, which is an exploratory step for the preparation of fluorescence tunable carbon quantum dots. The developed detection method embodies the flexible application of the principle of fluorescence internal filtration, the detection range of melamine and the basic one used by the national standard. The results have the advantages of simple operation and low detection cost. The results are as follows: (1) the average particle size of Co doped carbon quantum dots (N, S, P) is 20 nm, the UV visible absorption spectrum has obvious absorption peaks at 209 nm and 342 nm, corresponding to the pi - PI transition and the surface state energy level in the conjugated system, and the X ray photoelectron spectroscopy confirms that N, S, P and C are all formed. The infrared absorption spectra show that the surface of the carbon quantum dots contains rich hydroxyl, amino and C=O, C-N, P-O, C-S structures. The maximum excitation wavelength of Co doped QDs is 350 nm, the maximum emission wavelength is 443 nm, the emission light is blue light, and the half peak width is 77 nm, and the emission light is not changed based on the excitation luminescence. The co doping carbon quantum dots are used to detect the linear range of Eu3+. 4.878 Mu mol / L-1 to 33.33 mu mol-L-1, the linear equation is delta F=10.2C-19.2, the correlation coefficient is 0.998, the detection limit is 0.367 Mu mol. L-1, the average recovery rate 103.6%. (2) of the simulated wastewater Eu3+ 103.6%. (2) cyclodextrin carbon quantum dots average particle diameter is 50 nm, and the 215 nm has the UV visible absorption peak, indicating that it contains a large number of pi - pi *. The X ray photoelectron spectroscopy shows that the beta cyclodextrin is coated with the carbon skeleton of the quantum dots through the C-N-C structure, and the infrared absorption spectra show that the surface of the carbon quantum dots contains rich hydroxyl, amino and C=O, C=C, C-N, C-O-C and other functional groups. The maximum excitation wavelength of the coated carbon quantum dots is 348 nm, the maximum emission wavelength is 462 nm, the emission light is blue light and half peak. The width of 92 nm is based on the stimulated emission of emission light. The linear range of F- linear range is 27.62 mol. L-1 to 544.6 Mu mol. L-1 linear equation is delta F=0.383C-1.69, the linear correlation coefficient is 0.998, the detection limit is 0.367 u mol. L-1, and the selectivity is good. The average error of the 5.8%. (3) Huang Guangtan quantum dots is 30 in the test of the F- ion test in the toothpaste. Nm; the UV visible absorption peak atlas shows that carbon quantum dots contain pion bond and surface state energy level absorption; X ray photoelectron spectroscopy shows that carbon quantum dots contain C, N, O elements. The infrared absorption spectra indicate that the surface has rich hydroxyl, amino and C=O, C=C, C-N, C-O-C structure. The maximum excitation wavelength of the yellow carbon quantum dots is 415 nm, the largest emission Guangxi University The preparation and application of carbon quantum dots in the master's thesis and its application in fluorescence analysis are 556 nm, half peak width, 78 nm, yellow light and CIE coordinate (0.45,0.56). The linear range of melamine is 50 mu mol. L-1 to 700 mol. L-1, linear equation is delta F= 0.421C-22.3, linear correlation coefficient 0.991, detection limit 5.808 Mu mol L -1.
【學位授予單位】:廣西大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O657.3;O613.71;TB383.1
【參考文獻】
相關期刊論文 前10條
1 楊景和,鄒華彬,揭念琴,葛紅梅;銪-四環(huán)素-TOPO-十二烷基磺酸鈉熒光體系及四環(huán)素測定的研究[J];高等學校化學學報;1993年03期
2 徐成剛,盧紅,賃敦敏;甲基汞的熒光測定方法研究[J];四川師范大學學報(自然科學版);2000年04期
3 劉興利,景小明,楊學軍,馬晨,張強;離子選擇性電極直接電位法測定牙膏中游離氟[J];西南民族大學學報(自然科學版);2003年03期
4 陳培豐;β-環(huán)糊精磺;某肿幼饔脵C理研究[J];福建師范大學學報(自然科學版);2001年02期
5 童裳倫,朱巖,楊景和;稀土離子熒光探針對腎上腺素的測定[J];分析化學;2000年03期
6 劉建宇;王淑華;李婭婭;;離子選擇性電極法測定牙膏中的氟含量[J];檢驗檢疫科學;2006年02期
7 孫振艷;趙中一;郭小慧;傅紹斌;;熒光分析法測定維生素C[J];化學分析計量;2006年04期
8 王益林;黃武;王榮芳;周立亞;;顏色可調的高熒光CdTe量子點的水相合成[J];高等學校化學學報;2011年12期
9 杜保安;郭紅;高璐;賈紅霞;杜艷君;;CdTe/CdS核殼型量子點的水相合成與熒光性質研究[J];化工時刊;2011年01期
10 劉聲燕;王益林;莫鳳萍;潘華橋;;高質量水溶性CdTe量子點的合成與表征[J];功能材料;2012年23期
相關博士學位論文 前1條
1 阮靜;熒光納米探針及誘導多能干細胞的制備與在胃癌靶向成像與治療中的應用研究[D];上海交通大學;2012年
相關碩士學位論文 前1條
1 張文宇;碳量子點表面態(tài)的設計及其對性能的影響[D];中北大學;2016年
,本文編號:1778083
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1778083.html