表面等離子共振納米陣列結(jié)構(gòu)的構(gòu)筑及其性能研究
發(fā)布時間:2018-04-18 19:31
本文選題:金網(wǎng)格陣列 + Au/Si納米柱陣列。 參考:《河南大學(xué)》2015年碩士論文
【摘要】:在光學(xué)生物傳感領(lǐng)域,表面等離子共振(Surface Plasmon Resonance,SPR)技術(shù)是分析生物分子相互作用的一種先進(jìn)手段,具有實(shí)時檢測、無需標(biāo)記、耗樣少等特點(diǎn),已成為生物檢測的常用工具。傳統(tǒng)的具有SPR效應(yīng)的生物傳感器需要棱鏡和復(fù)雜的光學(xué)系統(tǒng),這種裝置靈敏度高、穩(wěn)定性好,卻不能實(shí)現(xiàn)小型化和集成化;且一些低濃度生物分子很難被傳統(tǒng)的SPR傳感器檢測出來。1998年,Ebbesen等人報(bào)道了貴金屬納米孔陣列的超透光性,并歸因于金屬納米孔陣列的表面等離子共振效應(yīng)。貴金屬納米結(jié)構(gòu)的SPR效應(yīng)對表面折射率的變化具有較高的靈敏度,被廣泛應(yīng)用于高靈敏度的生物檢測領(lǐng)域。但目前的一些構(gòu)筑圖案化金屬納米結(jié)構(gòu)的方法,不能有效的提供大面積具有周期性的陣列結(jié)構(gòu),阻礙了其工業(yè)化的發(fā)展。因此,如何構(gòu)筑大面積的、低成本的金屬納米陣列結(jié)構(gòu),如何提高該陣列結(jié)構(gòu)在生物檢測中的靈敏度和選擇性是其中研究的主要方向。針對上述金屬納米陣列結(jié)構(gòu)構(gòu)筑及其應(yīng)用中存在的問題,本論文提出以下主要研究目的:構(gòu)筑多種具有不同形貌低成本、大面積的金屬納米陣列結(jié)構(gòu),對其結(jié)構(gòu)的尺寸、高度、堆積密度等一系列參數(shù)進(jìn)行調(diào)控,并用于對某種特定分子的檢測,以期實(shí)現(xiàn)高靈敏度的生物檢測。研究思路:利用乳液聚合的方法合成了粒徑均一的聚苯乙烯納米微球(PS)結(jié)構(gòu)并以此結(jié)構(gòu)為模板,通過納米球刻蝕技術(shù)(Nanosphere lithography,NSL)、磁控濺射(Magnetron sputtering,MS)、反應(yīng)離子束刻蝕(Reactive ion etching,RIE)以及金屬輔助化學(xué)刻蝕(Metal-assisted chemical etching,MACE)等技術(shù)構(gòu)筑多種不同形貌的金屬納米陣列結(jié)構(gòu),并對該陣列結(jié)構(gòu)的長度、直徑等參數(shù)進(jìn)行精細(xì)調(diào)控,實(shí)現(xiàn)可控制備。通過紫外-可見吸收、TEM、SEM等表征手段對上述陣列結(jié)構(gòu)進(jìn)行光學(xué)性質(zhì)的表征。隨后,利用這些結(jié)構(gòu)的SPR效應(yīng)對羅丹明分子(R6G)進(jìn)行拉曼表征。本論文主要研究內(nèi)容和成果如下:(1)合成PS納米微球并以此為模板構(gòu)筑多種形貌的金屬納米陣列結(jié)構(gòu):通過乳液聚合法制備粒徑300 nm的具有單分散性的PS;采用手工以及LB膜分析儀器提膜兩種方式制備出大面積的PS納米球密排單層膜。以此為模板,利用NSL、RIE和MS技術(shù)分別構(gòu)筑了金包覆的球狀、三角點(diǎn)陣以及網(wǎng)格狀的陣列結(jié)構(gòu),并對其光學(xué)性能進(jìn)行了初步表征。其中,我們對金網(wǎng)格陣列結(jié)構(gòu)的形貌和光學(xué)性能進(jìn)行了重點(diǎn)研究。通過調(diào)整RIE和MS時間對金網(wǎng)格陣列結(jié)構(gòu)的厚度、直徑等參數(shù)進(jìn)行調(diào)控,實(shí)現(xiàn)該陣列結(jié)構(gòu)的可控制備,研究結(jié)果表明金網(wǎng)格陣列具有很好的SPR效應(yīng),并且金網(wǎng)格隨著刻蝕時間和濺射時間的增加,SPR峰位出現(xiàn)藍(lán)移。通過改變金網(wǎng)格陣列孔徑的大小和金膜的厚度來實(shí)現(xiàn)其光學(xué)SPR性質(zhì)的可控調(diào)節(jié)。這種可調(diào)控的具有SPR效應(yīng)的金網(wǎng)格結(jié)構(gòu),將會在生物檢測體系中有廣泛的應(yīng)用。(2)MACE法構(gòu)筑具有減反射增強(qiáng)效應(yīng)的硅納米柱陣列結(jié)構(gòu),并實(shí)該陣列長度、直徑的精細(xì)調(diào)控:本章中,主要利用上一章構(gòu)筑的金網(wǎng)格陣列結(jié)構(gòu)為模板,結(jié)合金屬輔助化學(xué)刻蝕方法制備硅納米柱陣列結(jié)構(gòu),并通過控制RIE和MACE的時間調(diào)控Si納米柱陣列結(jié)構(gòu)的直徑、高度等參數(shù)。研究結(jié)果表明,Si納米柱陣列結(jié)構(gòu)的直徑隨著RIE時間的增加而減小;相應(yīng)的高度隨著化學(xué)刻蝕時間的增加而增加。實(shí)現(xiàn)了長度和直徑的精細(xì)調(diào)控。更為重要的是Au/Si納米柱陣列結(jié)構(gòu)具有顯著的減反射性能和表面等離子增強(qiáng)作用,可以用于光伏器件的構(gòu)筑以及生物檢測。(3)具有SPR效應(yīng)的納米陣列結(jié)構(gòu)對羅丹明進(jìn)行檢測:選擇結(jié)構(gòu)參數(shù)可精確調(diào)控的金網(wǎng)格和Si納米柱陣列結(jié)構(gòu)作為研究對象,以羅丹明分子作為檢測目標(biāo),通過表面增強(qiáng)拉曼光譜實(shí)現(xiàn)陣列結(jié)構(gòu)對特定生物分子的高靈敏度檢測。研究結(jié)果表明構(gòu)筑得到金網(wǎng)格和Si納米柱陣列結(jié)構(gòu)對R6G分子均有拉曼增強(qiáng)效應(yīng),其中金網(wǎng)格陣列結(jié)構(gòu)的拉曼增強(qiáng)效果尤為明顯,對R6G的最低檢測濃度可達(dá)10-12M,增強(qiáng)因子在108數(shù)量級,大大提高了檢測靈敏度。
[Abstract]:In the field of optical biosensor, surface plasmon resonance (Surface Plasmon Resonance SPR) technology is an advanced analysis method for biomolecular interaction, real-time detection, label free, less sample consumption, has become a common tool for biological detection. Optical biosensor system with SPR effect and need the traditional prism complex, this device has the advantages of high sensitivity, good stability, but cannot achieve miniaturization and integration; and some low concentrations of biological molecules are difficult to the traditional SPR sensor to detect.1998, Ebbesen et al reported the super light transmittance of noble metal nano hole array, surface plasmon resonance effect is attributed to the metallic nano hole array SPR. Effect of noble metal nanostructures with high sensitivity to the change of the surface refractive index, is widely used in the field of biological detection with high sensitivity. But there is some. Method of building patterned metal nanostructures, array structure can not effectively provide a large area of periodic, hindered the development of its industrialization. Therefore, how to build a large area of the metal nano array structure and low cost, how to improve the array structure in biological detection sensitivity and selectivity is the main direction of the research. Aiming at the existing problems in the construction and application of the metal nano array structure, this thesis proposes the following research purpose: to build a variety of different morphologies of metal nano array structure with low cost, large area, the structure size, height, bulk density and a series of parameters to control, and for the detection of specific molecules. To achieve high sensitivity to biological detection. Research method: polystyrene nanoparticles with uniform particle size was synthesized by emulsion polymerization (PS) structure and This structure as a template, by etching nanospheres (Nanosphere lithography, NSL (Magnetron sputtering), magnetron sputtering, MS), reactive ion etching (Reactive ion, etching, RIE) and metal assisted chemical etching (Metal-assisted chemical etching, MACE) to build a variety of different morphologies of metal nano array structure and the technology. The length of the array structure, the diameter of fine adjustment, realize controllable preparation. Through UV Vis absorption, TEM, characterization of SEM were characterized by means of optical properties of the array structure. Then, using the SPR effect of these structures on the Luo Danming molecular (R6G) Raman characterization. The main research contents and the results are as follows: (1) the synthesis of PS nanoparticles and the metal nano array structure template to build a variety of morphologies: particle size of 300 nm method with monodisperse PS by emulsion polymerization; recovery The instrument provided film two ways to prepare PS nanoparticles in large area by hand and close packed monolayer LB film analysis. As the template, using NSL, RIE and MS were constructed of gold coated spherical, triangular lattice and grid array structure, and the optical properties were investigated. Among them, our gold grid array structure morphology and optical properties are studied. By adjusting the RIE and MS time on gold grid array structure thickness, diameter and other parameters to control, realize controllable preparation of the array structure, the results show that net lattice array with SPR effect is very good, and the grid with gold the increase of etching time and the sputtering time, SPR peak blue shift. By changing the grid array aperture size and the thickness of the gold film to achieve the optical properties of controllable SPR regulation. The regulatory effect of the network with SPR The lattice structure, will be widely used in biological detection systems. (2) MACE was constructed with anti reflection reinforced silicon nanopillar array structure effect, and the array length, the diameter of the fine regulation: in this chapter, mainly using the last chapter to build gold grid array as template, combined with metal assisted chemical etching method for preparing silicon nano column array structure, and through the regulation of Si nano column array structure control RIE and MACE time diameter, height and other parameters. The results show that the Si nano column array structure diameter decreases with the increase of RIE time; the corresponding height increases with the chemical etching time increased. To achieve the fine regulation of the length and the diameter. The more important is the Au/Si nano column array structure has significant anti reflection properties and surface plasmon enhancement can be used to build photovoltaic devices and biological detection. (3). Nano array structure SPR effect to detect Luo Danming: selection of structural parameters can be precisely controlled gold grid and Si nanowire arrays with molecular structure as Luo Danming as targets, by surface enhanced Raman spectroscopy to achieve high sensitivity array structure of biomolecules detection. The research results show that the enhanced effect of gold grid construction Si and nano column array structure of R6G molecule were Raman, gold grid array structure in which the Raman enhancement effect is obvious, the minimum detection of R6G concentration is 10-12M, the enhancement factor in the order of 108, greatly improving the detection sensitivity.
【學(xué)位授予單位】:河南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 魏飛;張強(qiáng);騫偉中;徐光輝;項(xiàng)榮;溫倩;王W,
本文編號:1769751
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1769751.html
最近更新
教材專著