SiC低維納米材料壓阻特性研究
發(fā)布時(shí)間:2018-04-12 10:21
本文選題:有機(jī)前驅(qū)體 + 熱解; 參考:《中國(guó)礦業(yè)大學(xué)》2017年碩士論文
【摘要】:傳感器技術(shù)是人類(lèi)認(rèn)識(shí)和改造世界的“五官”,是衡量現(xiàn)代化進(jìn)程的關(guān)鍵技術(shù)之一。壓阻式壓力傳感器因其靈敏度高、穩(wěn)定性好、能耗低、易于集成等優(yōu)點(diǎn),在航天航空、石油化工、醫(yī)療、汽車(chē)等領(lǐng)域應(yīng)用廣泛。在眾多傳感器中,半導(dǎo)體壓力傳感器因其性能優(yōu)異而備受關(guān)注。碳化硅(SiC)是第三代半導(dǎo)體,具有寬帶隙、高熱導(dǎo)率、高電子遷移率、較高擊穿電壓以及優(yōu)異的力學(xué)性能,在高溫、高頻和高輻射等苛刻環(huán)境下的器件應(yīng)用上具有顯著優(yōu)勢(shì)。圍繞SiC壓力傳感器研發(fā),已有的研究工作主要集中在薄膜、多晶和單晶塊體材料。低維納米材料因其特有的納米效應(yīng)和獨(dú)特的晶體結(jié)構(gòu),展現(xiàn)出了傳統(tǒng)體材料無(wú)法比擬的高靈敏的壓阻特性,為新型高效壓力傳感器的研發(fā)提供了契機(jī)。本論文以高靈敏SiC壓力傳感器研發(fā)為導(dǎo)向,首先采用有機(jī)前驅(qū)體熱解工藝,制備出具有不同摻雜元素和形貌的SiC一維納米材料,然后利用原子力顯微鏡的導(dǎo)電模式,對(duì)其壓阻特性進(jìn)行系統(tǒng)檢測(cè)和分析。綜合本論文工作,主要結(jié)論如下:(1)以有機(jī)前驅(qū)體(聚硅氮烷)熱解工藝,B_2O_3為摻雜劑,Co(NO_3)_2為催化劑,在純Ar氣氛中,制備出了單晶B摻雜3C-SiC納米線。壓阻特性檢測(cè)分析表明:所制備的納米線在(?)晶向表現(xiàn)為負(fù)壓阻,在51.7~181.0 nN的壓力下,其壓阻系數(shù)(?)為-8.83~-103.42×10-11 Pa-1,應(yīng)變系數(shù)高達(dá)-620.5,相比較已有報(bào)道的最高值,提高了近8倍。(2)以有機(jī)前驅(qū)體(聚硅氮烷)熱解工藝,B_2O_3為摻雜劑,未引入催化劑,在純Ar氣氛中,制備出了單晶B摻雜SiC納米帶。壓阻特性檢測(cè)分析表明:所制備的納米帶在晶向表現(xiàn)為負(fù)壓阻。在104.3~223.6 nN的壓力下,壓阻系數(shù)(?)為-29.96~-303.90×10-11 Pa-1,計(jì)算獲得的應(yīng)變系數(shù)高達(dá)-1823.4,比B摻雜SiC納米線的應(yīng)變系數(shù)提高3倍左右。(3)以有機(jī)前驅(qū)體(聚硅氮烷)熱解工藝,Co(NO_3)_2為催化劑,在N_2/Ar混合(其中N2作為摻雜劑)氣氛中,制備出了單晶N摻雜SiC納米線。在28.2nN的壓力下,測(cè)得壓阻系數(shù)(?)為~4.31×10-11 Pa-1,應(yīng)變系數(shù)為25.9。優(yōu)化選擇波長(zhǎng)為405 nm、光功率為62.4 mW的紫外光進(jìn)行激發(fā)時(shí),納米線壓阻系數(shù)為~11.77×10-11 Pa-1,相應(yīng)的應(yīng)變系數(shù)達(dá)到70.6,比暗態(tài)下提高了近3倍。
[Abstract]:The sensor technology is the human understanding and transforming the world "features", is one of the key technologies to measure modernization. Piezoresistive pressure sensor because of its high sensitivity, good stability, low energy consumption, easy integration, etc., in aerospace, petrochemical, medical, automotive and other fields are widely applied. In many sensors, semiconductor the pressure sensor because of its excellent properties have attracted much attention. Silicon carbide (SiC) is the third generation of semiconductor with wide band gap, high thermal conductivity, high electron mobility, high breakdown voltage and excellent mechanical properties at high temperature, and has the advantages of application of high frequency and high radiation and other harsh environments around the SiC pressure device. The sensor research and development, the research has focused on thin film, polycrystalline and single crystal bulk materials. Low dimensional nano materials because of its unique nano effect and unique crystal structure, showing the traditional bulk materials The piezoresistive properties of high sensitive material can not be compared, provides an opportunity for the development of new type high pressure sensor. This paper takes the high sensitive SiC pressure sensor research and development oriented, first by the organic precursor pyrolysis process, the preparation of SiC one-dimensional nano material with different doping elements and morphology, and then conducting mode by atomic force microscopy the system for detection and analysis of the piezoresistive properties. In this paper, the main conclusions are as follows: (1) the organic precursor (polysilazane) pyrolysis process B_2O_3 as doping agent, Co (NO_3) _2 as catalyst, in pure Ar atmosphere, prepared single crystal B doped 3C-SiC nanowires. The piezoresistive properties analysis showed that the prepared nanowires in the (?) crystal to show negative resistance in 51.7~181.0 nN under the pressure of the piezoresistive coefficient (?) -8.83~-103.42 * 10-11 Pa-1, the strain coefficient of up to -620.5, compared to the existing reports 鐨勬渶楂樺,
本文編號(hào):1739329
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1739329.html
最近更新
教材專(zhuān)著