CuO復(fù)合材料的制備及其擬芬頓性能的研究
發(fā)布時(shí)間:2018-04-02 03:33
本文選題:CuxO@C復(fù)合材料 切入點(diǎn):rGO-CuO復(fù)合材料 出處:《武漢理工大學(xué)》2015年碩士論文
【摘要】:隨著紡織工業(yè)的快速發(fā)展,染料的品種和成分也不斷翻新。然而,對于因紡織染料引起的水質(zhì)污染,高效的催化方法一直備受期待。其中有H2O2參與的擬芬頓催化體系具有很強(qiáng)的催化優(yōu)勢,如材料合成簡單、降解速率快、操作過程綠色環(huán)保、實(shí)驗(yàn)成本低、實(shí)驗(yàn)儀器要求簡單等。研究表明,一些金屬氧化物及相應(yīng)鹵氧化物(Fe3O4,CeO2,BiOBr,FeOCl等),金屬硫系化合物(如Cu9S5,CuS,CuS/CuSe,FeS等)以及金屬磷酸鹽(如Fe5(PO4)4(OH)3·2H2O)具有優(yōu)良的擬芬頓催化性能并可用于降解有機(jī)污染物。Cu O作為一種多功能半導(dǎo)體材料,在氣體傳感器、光催化和鋰離子電池等領(lǐng)域具有重要應(yīng)用。近幾年,由于其具有擬芬頓性能而備受關(guān)注。CuO及CuO基復(fù)合材料對過氧化氫(H2O2)具有親和性并具備較強(qiáng)的擬過氧物酶活性,可以替代過氧化物酶應(yīng)用于葡萄糖生物傳感器的檢測。納米CuO可以在H2O2協(xié)同作用下快速催化氧化TMB(3,3',5,5'-四甲基聯(lián)苯胺)和OPD(鄰苯二胺)等有機(jī)物。鑒于CuO可以將H2O2分解成具有強(qiáng)氧化能力的·OH等活性物種,因此其在染料降解領(lǐng)域具有較強(qiáng)的應(yīng)用潛力。(1)CuxO@C復(fù)合材料制備及其擬芬頓催化性能研究以Cu-MOF為前驅(qū)體,通過在N2氣氛和空氣中依次煅燒,得到CuxO@C復(fù)合材料,該材料保留了Cu-MOF的立方結(jié)構(gòu)。產(chǎn)物中含有大量CuxO(x=1,2)納米顆粒,該納米顆粒被碳層材料包覆并均勻分布在纖維狀的石墨化碳層表面。CuxO@C復(fù)合材料在加入少量H2O2后具有優(yōu)良的擬芬頓催化性能且具有穩(wěn)定性,這與產(chǎn)物為多孔結(jié)構(gòu)且在煅燒過程中生成石墨化碳層結(jié)構(gòu)有關(guān)。(2)rGO-CuO復(fù)合材料制備及其擬芬頓催化性能研究通過Cu(NO3)2和Na2CO3在水溶液中反應(yīng)得到Cu2(OH)2CO3膠體,與氧化石墨烯混合后,再采用水熱法得到rGO-CuO擬芬頓催化材料。當(dāng)rGO的質(zhì)量百分比達(dá)到0.1 wt%時(shí),rGO-CuO擬芬頓催化材料對RhB溶液的降解性能為最佳且具有穩(wěn)定性。rGO能增強(qiáng)CuO擬芬頓催化性能的原因:一是rGO對CuO的微觀結(jié)構(gòu)可以進(jìn)行調(diào)控;二是rGO可以有效轉(zhuǎn)移電子從而加速擬芬頓反應(yīng)速率;三是rGO通過Π-Π作用促進(jìn)催化劑對Rh B染料的吸附作用。(3)Ag-CuO復(fù)合材料制備及其光芬頓催化性能研究將商業(yè)Cu粉在空氣中煅燒得到CuO,再在CuO表面上采用光沉積Ag的方法成功合成Ag-CuO復(fù)合材料。當(dāng)Ag的理論值含量達(dá)到10%時(shí),Ag-CuO光芬頓材料對RhB溶液的光芬頓降解性能最佳且具有穩(wěn)定性。Ag能增強(qiáng)CuO光芬頓催化性能的原因是Ag能夠快速轉(zhuǎn)移光生電子,提高催化效率。
[Abstract]:With the rapid development of textile industry, the variety and composition of dyes are constantly renovated.However, efficient catalytic methods have been expected for the water pollution caused by textile dyes.The pseudo-Fenton catalytic system with the participation of H2O2 has strong catalytic advantages, such as simple material synthesis, fast degradation rate, green operation process, low experimental cost, simple equipment requirements, and so on.Research shows thatSome metal oxides and their corresponding halogen oxides, such as Fe3O4CeO2O2BiOBr-FeOCl, metal sulfur compounds (such as Cu9S5CUSS / CuSeFES, etc.) and metal phosphates (such as Fe5(PO4)4(OH)3 _ 2H _ 2O) have excellent quasi-Fenton catalytic properties and can be used to degrade organic pollutant. CuO as a multifunctional semiconductor material,It has important applications in gas sensor, photocatalysis and lithium ion battery.In recent years, due to its quasi-Fenton properties, CuO and CuO matrix composites have affinity to H _ 2O _ 2 hydrogen peroxide and have strong peroxidism enzyme activity, so they can be used to detect glucose biosensor instead of peroxidase.Nanometer CuO can rapidly catalyze the oxidation of CuO and o-phenylenediamine (OPD) under the synergistic action of H2O2.In view of the fact that CuO can decompose H2O2 into active species such as OH with strong oxidation ability, it has a strong application potential in the field of dye degradation. The preparation and quasi-Fenton catalytic performance of Cu-MOF are studied.CuxO@C composites were obtained by calcination in N2 atmosphere and air respectively. The cubic structure of Cu-MOF was retained.The product contains a large number of CuxOXOX1 / 2) nanoparticles, which are coated with carbon layer material and distributed uniformly on the surface of fibre-like graphitized carbon layer. The CuxOOR-C composite has excellent pseudo-Fenton catalytic performance and stability after adding a small amount of H2O2 to the surface of the graphitized carbon layer.This is related to the structure of graphitized carbon layer formed in the calcination process and the preparation and pseudo-Fenton catalytic properties of the composite. The Cu2(OH)2CO3 colloid was prepared by the reaction of Cu(NO3)2 and Na2CO3 in aqueous solution and mixed with graphene oxide.The rGO-CuO quasi-Fenton catalytic material was obtained by hydrothermal method.When the mass percentage of rGO is 0.1 wt%, the degradation performance of RhB solution is the best with the stability. RGO can enhance the catalytic performance of CuO pseudo-Fenton. One is that rGO can regulate the microstructure of CuO.Second, rGO can transfer electrons effectively and accelerate the pseudo-Fenton reaction rate.Thirdly, rGO can promote the adsorption of RHB dyes on RHB by rGO. Preparation of Ag-CuO Composites and its photocatalytic Properties; calcination of commercial Cu powder in air to obtain CuO; then photodeposition of Ag on the surface of CuOAg-CuO composites were successfully synthesized.When the theoretical value of Ag is 10, the Ag-CuO photo-Fenton material has the best photo-Fenton degradation performance for RhB solution and the stability. Ag can enhance the photo-Fenton catalytic performance of CuO. The reason is that Ag can quickly transfer photogenerated electrons and improve the catalytic efficiency.
【學(xué)位授予單位】:武漢理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TB33;O643.36
【參考文獻(xiàn)】
相關(guān)期刊論文 前3條
1 朱脈勇;孟德海;王程姣;狄健;刁國旺;;CuO納米片催化H_2O_2氧化降解亞甲基藍(lán)(英文)[J];催化學(xué)報(bào);2013年11期
2 劉承帥;高原雪;李芳柏;雷靜;張干;匡耀求;;鐵氧化物/草酸/UVA體系中2-硫醇基苯駢噻唑的光化學(xué)降解[J];催化學(xué)報(bào);2006年02期
3 方建章,李浩,雷恒毅;電生成Fenton試劑處理染料廢水[J];化工環(huán)保;2004年04期
相關(guān)碩士學(xué)位論文 前2條
1 陳冬芝;石墨烯的綠色制備及其功能性應(yīng)用研究[D];南京理工大學(xué);2014年
2 田法;EDTA改性電-Fenton反應(yīng)降解DMP的研究[D];南昌大學(xué);2007年
,本文編號:1698627
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1698627.html
最近更新
教材專著