基于PAA模板法制備Ag納米薄膜復(fù)合結(jié)構(gòu)及其光學(xué)性質(zhì)的研究
發(fā)布時間:2018-03-23 00:05
本文選題:多孔陽極氧化鋁 切入點:Ag/PAA納米復(fù)合結(jié)構(gòu) 出處:《南京理工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:貴金屬納米結(jié)構(gòu)由于其表面等離子體共振效應(yīng)具有獨特的光學(xué)性質(zhì),如對光的選擇性吸收和反射、近場增強等。材料的光學(xué)性質(zhì)不僅與材料本身有關(guān),還與材料的幾何結(jié)構(gòu)有關(guān),具有特殊納米結(jié)構(gòu)的超材料可以通過其幾何參數(shù)的改變實現(xiàn)對電磁場的調(diào)控。將納米結(jié)構(gòu)的光子共振與金屬材料的局域表面等離子體共振相結(jié)合可以有效提高材料的光學(xué)性質(zhì),在太陽能電池、光電轉(zhuǎn)換材料、光催化、分子檢測及增強發(fā)射等領(lǐng)域具有廣泛的應(yīng)用。本文結(jié)合納米壓印技術(shù)、陽極氧化法、熱蒸發(fā)沉積技術(shù)和原子層沉積技術(shù)制備了Ag納米薄膜復(fù)合結(jié)構(gòu)并研究其光學(xué)性質(zhì)。首先,采用硬納米壓印法和陽極氧化法制備了超薄有序多孔陽極氧化鋁(Porous Anodic Alumina, PAA)模板,結(jié)合熱蒸發(fā)沉積技術(shù)制備了超薄Ag納米顆粒/PAA復(fù)合結(jié)構(gòu),并研究了退火時間及退火溫度對其光吸收性能的影響。結(jié)果表明:在PAA模板上沉積Ag膜后,由于Ag納米顆粒的等離子體共振作用,Ag/PAA納米復(fù)合結(jié)構(gòu)的吸收率明顯提高;當(dāng)Ag薄膜沉積厚度為30 nm并不進行退火處理時,Ag/PAA納米復(fù)合結(jié)構(gòu)在230~1050 nm的寬光譜范圍內(nèi)一直保持有較高的吸收率,且在525nm處最高吸收率約為90.3%,在1050 nm處的最低吸收率仍為70.3%;其次,采用多步循環(huán)氧化-腐蝕擴孔法制備了倒錐型PAA模板,結(jié)合熱蒸發(fā)沉積技術(shù)制備了倒錐型Ag/PAA納米復(fù)合結(jié)構(gòu),并研究了Ag薄膜沉積厚度及退火處理工藝對其光學(xué)性質(zhì)的影響。結(jié)果表明:倒錐型PAA的陷光作用、Ag納米顆粒的等離子體共振作用及顆粒間的耦合效應(yīng)使得Ag/PAA納米復(fù)合結(jié)構(gòu)的吸收率明顯增大,表面增強拉曼散射效果顯著增強;倒錐型Ag/PAA納米復(fù)合結(jié)構(gòu)的吸收率隨著Ag納米薄膜沉積厚度的增加而降低;退火處理后,Ag薄膜轉(zhuǎn)變?yōu)榧{米顆粒,顆粒間存在一定的間隙,倒錐型Ag/PAA納米復(fù)合結(jié)構(gòu)的吸收強度降低,吸收范圍變窄,表面增強拉曼散射強度增加。最后,以倒錐型PAA為模板,結(jié)合熱蒸發(fā)沉積技術(shù)和原子層沉積技術(shù),制備TiO2/Ag/PAA復(fù)合納米結(jié)構(gòu),研究了Ag薄膜沉積厚度、Ti02薄膜沉積溫度、薄膜沉積層數(shù)和退火處理工藝對納米復(fù)合結(jié)構(gòu)光學(xué)性質(zhì)的影響。結(jié)果表明:倒錐型TiO2/Ag/PAA納米復(fù)合結(jié)構(gòu)具有較高寬光譜陷光效應(yīng);當(dāng)Ag薄膜沉積厚度為30 nm, TiO2沉積溫度為75℃時,所得倒錐型TiO2/Ag/PAA納米復(fù)合結(jié)構(gòu)的吸收效率最高,在475nm處具有96.7%的最高吸收率,在800 nm處的最低吸收率可達達82.5%,在1060 nm和1860 nm處具有兩個強吸收峰,吸收率高達80.2%。
[Abstract]:Due to its surface plasmon resonance effect, noble metal nanostructures have unique optical properties, such as selective absorption and reflection of light, near field enhancement, etc. The optical properties of noble metal nanostructures are related not only to the material itself, but also to the material itself. Also related to the geometric structure of the material, Supermaterials with special nanostructures can regulate the electromagnetic field by changing their geometric parameters. Combining the photonic resonance of nanostructures with the local surface plasmon resonance of metallic materials can effectively improve the optical properties of the materials. It has a wide range of applications in solar cells, photovoltaic materials, photocatalysis, molecular detection and enhanced emission. The composite structure and optical properties of Ag nanocrystalline films were prepared by thermal evaporation deposition and atomic layer deposition. Firstly, ultrathin and ordered porous anodic alumina (PAA) templates were prepared by hard nano-imprint and anodic oxidation. Ultrathin Ag nanoparticles / PAA composite structures were prepared by thermal evaporation deposition technique. The effects of annealing time and annealing temperature on the optical absorption properties of Ag films were investigated. The results showed that Ag films were deposited on PAA templates. The absorptivity of Ag / PAA nanocomposite structure was improved obviously because of the plasmon resonance effect of Ag nanoparticles. When the deposition thickness of Ag film is 30 nm and the annealing is not carried out, the Ag / PAA nanocomposite structure has a high absorptivity in the wide spectral range of 230 ~ 1050nm, and the highest absorption rate is about 90.3% at 525nm, and the lowest absorptivity at 1050 nm is still 70.3nm. The inverted cone type PAA template was prepared by multistep cyclic oxidation and corrosion pore expansion method, and the inverted cone type Ag/PAA nanocomposite structure was prepared by means of thermal evaporation deposition. The effects of deposition thickness and annealing process on the optical properties of Ag thin films were studied. The results show that the trapping effect of inverted cone type PAA and the plasmon resonance effect of Ag nanoparticles and the coupling effect between Ag nanoparticles make Ag/PAA nanocrystals. The absorptivity of the composite structure was obviously increased. The effect of surface-enhanced Raman scattering was significantly enhanced, the absorptivity of inverted conical Ag/PAA nanocomposite structure decreased with the increase of deposition thickness of Ag nanocrystalline films, and after annealing, the Ag films changed into nanocrystalline particles, and there was a certain gap between them. The absorption intensity of inverted cone type Ag/PAA nanocomposite structure decreases, the absorption range becomes narrower and the intensity of surface enhanced Raman scattering increases. Finally, the inverted cone type PAA is used as template, combined with thermal evaporation deposition and atomic layer deposition. TiO2/Ag/PAA composite nanostructures were prepared, and the deposition temperature of Ti02 thin films and Ag thin films were studied. The effect of deposition layer number and annealing process on the optical properties of nanocomposite structure was investigated. The results showed that the inverted cone TiO2/Ag/PAA nanocomposite structure had a wider spectral trapping effect, and when the deposition thickness of Ag thin film was 30 nm, the deposition temperature of TiO2 film was 75 鈩,
本文編號:1650991
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1650991.html
最近更新
教材專著