基于高吸附大分子磁性碳基納米復(fù)合材料的制備
本文選題:氧化石墨烯 切入點(diǎn):多壁碳納米管 出處:《濟(jì)南大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:近年來,以石墨烯(Graphene)和碳納米管(MWCNTs)為代表的碳基材料吸附劑成為了備受關(guān)注的明星材料,主要是因為碳材料優(yōu)良的化學(xué)穩(wěn)定性,結(jié)構(gòu)的多樣性,密度低,適合大批量生產(chǎn)等優(yōu)異的特點(diǎn)。但由于石墨烯自身易團(tuán)聚,在水溶液中分散性較差,并且碳基材料上具有的活性吸附位點(diǎn)數(shù)量較少,這就限制了碳材料進(jìn)一步有效的應(yīng)用于污水處理。基于此,本論文首先通過改進(jìn)的Hummers法制備表面含有羧基、羥基以及環(huán)氧基團(tuán)的氧化石墨烯(GO);其次通過物理混雜的方法制備GO-MWCNTs雜化體,MWCNTs在GO層與層之間形成交聯(lián)網(wǎng)絡(luò),拓寬了GO的層間距,使雜化體表面積增加;然后通過化學(xué)共沉淀法將Fe_3O_4磁性微粒沉積在GO-MWCNTs雜化體表面,合成Fe_3O_4-(GO-MWCNTs)磁性復(fù)合材料;進(jìn)而采用具有豐富官能團(tuán)的聚賴氨酸(PLL)、海藻酸鈉(SA)及聚谷氨酸(PGA)大分子對Fe_3O_4-(GO-MWCNTs)復(fù)合材料進(jìn)行表面接枝處理,得到具有豐富吸附位點(diǎn),較大比表面積的磁性納米碳基-高分子復(fù)合材料,并將這三種磁性納米復(fù)合材料應(yīng)用于污水中重金屬離子及有機(jī)染料的吸附與分離。1.通過改進(jìn)的Hummers法首先制備了具有單層片狀結(jié)構(gòu)并且表面含有有限數(shù)量的羧基、羥基、環(huán)氧基等含氧官能團(tuán)的GO。X-射線衍射(XRD)與透射電鏡(TEM)的表征結(jié)果,GO層狀結(jié)構(gòu)已分開,經(jīng)計算,層間距為0.835 nm。2.通過物理混雜的方法制備GO-MWCNTs雜化體。GO與MWCNTs的最佳質(zhì)量比為4:1。紅外(FT-IR)與掃描電鏡(SEM)的表征結(jié)果清晰說明GO與MWCNTs已有效的進(jìn)行雜化。XRD測試結(jié)果表明GO-MWCNTs雜化體層間距為0.847 nm,這顯然高于GO的層間距。3.通過化學(xué)共沉淀法合成Fe_3O_4-(GO-MWCNTs)磁性雜化體。Fe_3O_4與GO-MWCNTs雜化體的最佳質(zhì)量比為3.2:1~3.8:1。FT-IR、SEM、熱失重(TGA)測試表明Fe_3O_4已經(jīng)通過Fe-O配位鍵分散到GO-MWCNTs雜化體表面。4.使用PLL對Fe_3O_4-(GO-MWCNTs)復(fù)合材料進(jìn)行表面接枝處理,制備磁性PLL-Fe_3O_4-(GO-MWCNTs)納米復(fù)合材料。FT-IR、TGA表征結(jié)果顯示PLL已經(jīng)通過酰胺鍵接枝到Fe_3O_4-(GO-MWCNTs)磁性雜化體表面。PLL的加入不僅大大提高了復(fù)合材料的活性吸附位點(diǎn),而且提高了復(fù)合材料在水中的分散性。將該復(fù)合材料用于水溶液中陽離子染料亞甲基藍(lán)(MB)、陰離子染料檸檬黃及重金屬離子Pb(II)的吸附和分離,實驗結(jié)果表明在最優(yōu)吸附條件下,PLL-Fe_3O_4-(GO-MWCNTs)對MB最大吸附量計算為561.80mg·g-1,對檸檬黃最大吸附量計算為775.19 mg·g-1,對Pb(II)最大吸附量計算為1038.42mg·g-1。5.使用SA對Fe_3O_4-(GO-MWCNTs)復(fù)合材料進(jìn)行表面修飾,制備磁性SA-Fe_3O_4-(GO-MWCNTs)納米復(fù)合材料。FT-IR、TGA表征結(jié)果顯示SA已經(jīng)包埋Fe_3O_4-(GO-MWCNTs)磁性雜化體形成小球。將該復(fù)合小球用于MB溶液及含二價重金屬離子Cu(II)、Cd(II)、Ni(II)溶液的吸附和分離實驗。實驗結(jié)果表明選取最優(yōu)的吸附條件,該復(fù)合小球?qū)B的最大吸附量計算為632.91 mg·g-1,對二價重金屬離子的吸附能力大小為Cu(II)Cd(II)Ni(II)。6.使用PGA對Fe_3O_4-(GO-MWCNTs)復(fù)合材料進(jìn)行表面接枝處理,制備磁性PGA-Fe_3O_4-(GO-MWCNTs)納米復(fù)合材料。FT-IR、TGA表征結(jié)果顯示PGA已接枝到Fe_3O_4-(GO-MWCNTs)復(fù)合材料的表面。將該磁性復(fù)合材料用于對重金屬離子Cu(II)、Cd(II)、Ni(II)的吸附和分離實驗研究中。實驗結(jié)果表明對重金屬離子的吸附過程都遵循準(zhǔn)二級動力學(xué)模型且吸附等溫線都符合Langmuir模型,實驗結(jié)果表明選取最優(yōu)的吸附條件,PGA-Fe_3O_4-(GO-MWCNTs)對重金屬離子的吸附能力為Cd(II)Cu(II)Ni(II)。
[Abstract]:In recent years, with graphene (Graphene) and carbon nanotubes (MWCNTs) adsorption of carbon based materials as the representative of the agent has become the concern of the star material, mainly because of the chemical stability of carbon material with excellent structure, diversity, low density, suitable for mass production and other excellent characteristics. But because graphene itself is easy reunion, poor dispersion in aqueous solution, with fewer active adsorption sites on carbon based materials and this limits the application of carbon materials further effective in sewage treatment. Based on this, this paper first through the improved Hummers method for preparing surface containing carboxyl, hydroxyl and epoxy groups of graphene oxide (GO); followed by physical method for preparation of GO-MWCNTs hybrid hybrid, MWCNTs crosslinking network is formed between the GO layer and GO layer, broaden the layer spacing, increase the surface area of the hybrid; then by chemical coprecipitation method Fe_3O_ The 4 magnetic particles deposited on the surface of GO-MWCNTs hybrid, the synthesis of Fe_3O_4- (GO-MWCNTs) magnetic composite material; then the rich functional poly lysine (PLL), sodium alginate (SA) and poly glutamic acid (PGA) molecules on Fe_3O_4- (GO-MWCNTs) composite materials for surface grafting treatment, get rich adsorption sites larger than the magnetic nano carbon based surface composite polymer materials and.1. adsorption and separation of the three kinds of magnetic nano composite materials applied in the wastewater of heavy metal ions and organic dye by the improved Hummers method is first prepared with a single sheet structure and the surface with a limited number of carboxyl, hydroxyl, epoxy GO.X- ray diffraction radical oxygen containing functional groups (XRD) and transmission electron microscopy (TEM) characterization results, GO layered structure is separated, by calculation, the layer distance of 0.835 nm.2. by physical method mixed preparation GO-MWCNTs The best quality of hybrid.GO and MWCNTs is 4:1. infrared (FT-IR) and scanning electron microscopy (SEM) characterization results clearly showed that the GO and MWCNTs have the hybrid.XRD test results show that the GO-MWCNTs hybrid layer spacing of 0.847 nm, which was obviously higher than that of the interlayer spacing of the GO.3. Fe_3O_4- prepared by co precipitation method by (GO-MWCNTs) the best quality magnetic hybrid.Fe_3O_4 and GO-MWCNTs hybrid ratio of 3.2:1~3.8:1.FT-IR, SEM, thermogravimetry (TGA) test shows that Fe_3O_4 have been dispersed on the surface of.4. GO-MWCNTs hybrid using PLL to Fe_3O_4- through the Fe-O coordination bond (GO-MWCNTs) composite surface grafting treatment, preparation of magnetic nano composite PLL-Fe_3O_4- (GO-MWCNTs).FT-IR materials, TGA results show that PLL has been grafted onto Fe_3O_4- via amide bond (GO-MWCNTs) joined the.PLL surface of the magnetic hybrid not only greatly improve the adsorption activity of composite material Site, but also improve the composite material dispersed in water. The composite material for the cationic dye methylene blue (MB), lemon yellow dye and heavy metal anion ion Pb (II) adsorption and separation, the experimental results show that under the optimal adsorption conditions, PLL-Fe_3O_4- (GO-MWCNTs) MB of the maximum adsorption capacity calculation 561.80mg g-1, the maximum adsorption capacity calculated tartrazine was 775.19 Mg - g-1, Pb (II) to calculate the maximum adsorption capacity for 1038.42mg g-1.5. using SA Fe_3O_4- (GO-MWCNTs) composite materials for surface modification, preparation of magnetic SA-Fe_3O_4- (GO-MWCNTs).FT-IR nanocomposites, TGA results show that SA has. Embedded Fe_3O_4- (GO-MWCNTs) hybrid magnetic beads. The formation of the composite beads for MB solution containing two valence and heavy metal ion Cu (II), Cd (II), Ni (II) adsorption and separation of the test solution. Experimental results show that the selection of the optimum absorption With conditions, the maximum adsorption capacity of the composite ball of MB calculation is 632.91 Mg - g-1, the price of two heavy metal ions adsorption capacity of the size of Cu (II) Cd (II) Ni (II).6. PGA of Fe_3O_4- (GO-MWCNTs) composite surface grafting treatment, preparation of magnetic PGA-Fe_3O_4- (GO-MWCNTs).FT-IR nano composite materials, TGA results show that PGA has been grafted to the surface of Fe_3O_4- (GO-MWCNTs) composite material. The magnetic composite material for heavy metal ions on Cu (II), Cd (II), Ni (II) adsorption and separation experiments. The experimental results show that the adsorption process of heavy metal ions will follow the quasi two order kinetic model and the adsorption isotherms are consistent with the Langmuir model, the experimental results show that the optimal adsorption conditions were selected, PGA-Fe_3O_4- (GO-MWCNTs) adsorption capacity of heavy metal ions on Cd (II) Cu (II) Ni (II).
【學(xué)位授予單位】:濟(jì)南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB33;TQ424
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 柴囡囡;王朋濤;郭蕾;李正炎;;固定化三角褐指藻對海水中壬基酚的去除和降解作用研究[J];中國海洋大學(xué)學(xué)報(自然科學(xué)版);2016年01期
2 孫丹;侯朝霞;王少洪;王美涵;胡小丹;李思明;李霖;;三維石墨烯及其復(fù)合材料的研究進(jìn)展[J];兵器材料科學(xué)與工程;2015年06期
3 陳艷艷;馬騰;紀(jì)緒強(qiáng);郭壘;馬曉梅;;氧化石墨烯/海藻酸鈣復(fù)合纖維的制備與性能研究[J];青島大學(xué)學(xué)報(工程技術(shù)版);2015年02期
4 陳瑩瑩;宓一鳴;阮勤超;阮曉棟;金言宜;;石墨烯的制備及應(yīng)用的研究進(jìn)展[J];硅酸鹽通報;2015年03期
5 馮冬燕;孫怡然;于飛;李晨璐;李強(qiáng);郭永福;白仁碧;馬杰;;石墨烯及其復(fù)合材料對水中重金屬離子的吸附性能研究[J];功能材料;2015年03期
6 莊媛;于飛;馬杰;陳君紅;;石墨烯去除水中重金屬和抗生素的研究進(jìn)展[J];功能材料;2014年23期
7 王波;賀盛福;張帆;彭志遠(yuǎn);彭曉春;;樹枝狀聚酰胺-胺接枝氧化石墨烯的制備及其對Cu(Ⅱ)的吸附動力學(xué)與熱力學(xué)[J];精細(xì)化工;2014年08期
8 周國s,
本文編號:1624837
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1624837.html