泡沫鋁夾層板仿真建模及壓縮性能研究
本文選題:泡沫鋁夾層板 切入點(diǎn):仿真建模 出處:《昆明理工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:泡沫鋁材料具有低密度、高比強(qiáng)度和比剛度,不同尋常的聲學(xué)特性,能量吸收能力高,阻燃性等特性,而廣泛應(yīng)用于汽車工程、船舶和航空航天等領(lǐng)域。但是,此類材料在實(shí)際應(yīng)用中仍面臨模量低和表面粗糙等問題而難以單獨(dú)作為結(jié)構(gòu)材料使用。為解決上述問題,通常將泡沫鋁和傳統(tǒng)致密金屬材料進(jìn)行復(fù)合,其中具有夾芯結(jié)構(gòu)的泡沫鋁夾層板是主要復(fù)合形式之一。在工程應(yīng)用中,泡沫鋁夾層板與其它金屬板材連接存在一定的問題。諸如,泡沫鋁夾層板厚且致密化程度低從而導(dǎo)致連接件不能傳遞大的作用力,甚至引起孔結(jié)構(gòu)的破壞和密封性降低等問題。目前國外已經(jīng)制備出了面板與泡沫鋁芯之間具有冶金結(jié)合的泡沫鋁夾層板,但是國內(nèi)泡沫鋁夾層板是通過粘接的方法間接獲得的,該材料耐高溫與耐腐蝕能力較差。鑒于上述原因,本文的工作內(nèi)容如下:首先,本文綜述了泡沫鋁夾層板材料的制備方法與技術(shù),給出了每一種制備方法的工藝流程圖和得到泡沫鋁夾層板的結(jié)構(gòu)形狀圖。最后總結(jié)了泡沫鋁夾層板每一種制備方法的優(yōu)點(diǎn)和缺點(diǎn)。其次,本文在前人的基礎(chǔ)上提出了泡沫鋁夾層板的建模方法,即泡沫鋁夾層板仿真模型生成系統(tǒng),該系統(tǒng)是模型尺寸、孔隙率、孔徑范圍以及最小壁厚均為可調(diào)的泡沫鋁夾層板建模系統(tǒng),和前人的三維模型相比,更符合真實(shí)的泡沫鋁夾層板材料結(jié)構(gòu)。但是該模型的內(nèi)部結(jié)構(gòu)是相當(dāng)復(fù)雜的,在后續(xù)計(jì)算機(jī)仿真軟件中網(wǎng)格劃分比較難。最后,本文簡化了泡沫鋁夾層板的仿真模型,采用宏觀整體建模方法,采用圓孔假設(shè)、均勻化假設(shè)等建立泡沫鋁夾層板仿真模型。在模擬過程中,利用有限元軟件ANSYS/LS-DYNA,通過理論分析和有限元模擬,研究泡沫鋁夾層板壓縮性能力學(xué)行為,以及泡沫鋁夾層板在壓縮載荷下的變形機(jī)理。結(jié)果表明,泡沫鋁夾層板在壓縮載荷的應(yīng)力-應(yīng)變曲線中具有彈性區(qū)、屈服區(qū)和致密區(qū)。壓縮速度和孔隙率對(duì)泡沫鋁夾層板材料的壓縮力學(xué)行為影響顯著,隨著壓縮速度的不斷增加,泡沫鋁夾層板的抵抗破壞能力提高;隨著孔隙率的增大,泡沫鋁夾層板的彈性模量和屈服強(qiáng)度逐漸減小。這進(jìn)一步證實(shí)了基體金屬的力學(xué)性質(zhì)直接決定了泡沫鋁夾層板材料的壓縮變形行為,并且泡沫鋁夾層板材料的彈性模量、屈服強(qiáng)度等均與基體金屬材料的相應(yīng)性能有關(guān)。
[Abstract]:Aluminum foams have the characteristics of low density, high specific strength and specific stiffness, unusual acoustics, high energy absorption, flame retardancy and so on. They are widely used in automotive engineering, ship, aerospace and other fields. In practical application, such materials are still faced with problems such as low modulus and rough surface, which make them difficult to be used as structural materials alone. In order to solve the above problems, aluminum foam and traditional dense metal materials are usually combined. The foam aluminum sandwich plate with sandwich structure is one of the main composite forms. In the engineering application, there are some problems in the connection between the foam aluminum sandwich plate and other metal plates, such as, The thick and low densification of the aluminum foam sandwich plate results in the joint not being able to transmit large forces, At present, a metallurgical aluminum sandwich plate with metallurgical bonding between the panel and the foam aluminum core has been prepared, but the domestic foam aluminum sandwich plate is obtained indirectly by the method of bonding. In view of the above reasons, the work of this paper is as follows: firstly, the preparation method and technology of foam aluminum sandwich plate are reviewed. The process flow chart of each preparation method and the structure shape diagram of the foam aluminum sandwich plate are given. Finally, the advantages and disadvantages of each preparation method are summarized. Secondly, In this paper, the modeling method of foamed aluminum sandwich plate is put forward, that is, the simulation model generation system of foam aluminum sandwich plate. The system is model size, porosity, porosity. The modeling system of aluminum foam sandwich plate with adjustable aperture range and minimum wall thickness is more consistent with the real material structure of the foam aluminum sandwich plate than the previous 3D model, but the internal structure of the model is quite complex. In the following computer simulation software, it is difficult to divide the mesh. Finally, the simulation model of aluminum foam sandwich plate is simplified in this paper, the macro integral modeling method is adopted, and the circular hole hypothesis is adopted. The simulation model of aluminum foam sandwich plate was established by homogenization hypothesis. In the process of simulation, the mechanical behavior of the compressive properties of aluminum foam sandwich plate was studied by theoretical analysis and finite element simulation using the finite element software ANSYS / LS-DYNA. And the deformation mechanism of aluminum foam sandwich plate under compression load. The results show that there is an elastic zone in the stress-strain curve of aluminum foam sandwich plate under compression load. The compressive rate and porosity have a significant effect on the compressive mechanical behavior of the foam aluminum sandwich plate. With the increasing of the compression speed, the resistance to failure of the foam aluminum sandwich plate increases, and the porosity increases with the increase of the porosity. The elastic modulus and yield strength of the aluminum foam sandwich plate decrease gradually, which further proves that the mechanical properties of the matrix metal directly determine the compressive deformation behavior of the foam aluminum sandwich plate material, and the elastic modulus of the foam aluminum sandwich plate material. The yield strength is related to the corresponding properties of the matrix metal material.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程和法,黃笑梅,許玲;泡沫鋁的動(dòng)態(tài)壓縮性能和吸能性研究[J];兵器材料科學(xué)與工程;2003年05期
2 程和法;黃笑梅;王強(qiáng);田杰;韓福生;;通孔泡沫鋁的動(dòng)態(tài)壓縮行為[J];爆炸與沖擊;2006年02期
3 劉欣;薛向欣;張瑜;張淑會(huì);段培寧;張虎;;泡沫鋁復(fù)合材料的研究[J];材料導(dǎo)報(bào);2007年01期
4 劉培生;夏鳳金;羅軍;;多孔材料模型分析[J];材料工程;2009年07期
5 左孝青,孫加林;泡沫金屬制備技術(shù)研究進(jìn)展[J];材料科學(xué)與工程學(xué)報(bào);2004年03期
6 梁曉軍,朱勇剛,陳鋒,何德坪;泡沫鋁芯三明治板的粉末冶金制備及其板/芯界面研究[J];材料科學(xué)與工程學(xué)報(bào);2005年01期
7 劉培生;泡沫金屬力學(xué)性能的若干問題[J];稀有金屬材料與工程;2004年05期
8 戴長松,張亮,王殿龍,胡信國;泡沫材料的最新研究進(jìn)展[J];稀有金屬材料與工程;2005年03期
9 鳳儀,朱震剛,潘藝,胡時(shí)勝;泡沫鋁的動(dòng)態(tài)力學(xué)性能研究[J];稀有金屬材料與工程;2005年04期
10 李虎;虞奇峰;張波;王輝;范紅松;張興棟;;漿料發(fā)泡法制備生物活性多孔鈦及其性能[J];稀有金屬材料與工程;2006年01期
相關(guān)碩士學(xué)位論文 前1條
1 于沖沖;泡沫鋁夾芯三明治結(jié)構(gòu)制備及可靠性評(píng)價(jià)[D];哈爾濱工業(yè)大學(xué);2012年
,本文編號(hào):1614500
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1614500.html