海藻酸鈣及其共混改性復(fù)合膜的滲透性研究
本文選題:海藻酸鈣 切入點(diǎn):滲透 出處:《貴州大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:海藻酸鈉是從褐藻類植物中提取的天然多糖,是一種豐富以及對(duì)環(huán)境友好的海洋生物資源。隨著材料學(xué)和生物醫(yī)學(xué)的發(fā)展,越來(lái)越多的學(xué)者開始研究海藻酸鈉,其應(yīng)用前景十分廣闊。本文以海藻酸鈉水溶液為成膜劑,以鈣離子為交聯(lián)劑,通過溶劑揮發(fā)法,制備海藻酸鈣薄膜,通過添加殼聚糖、糊精制備共混改性復(fù)合膜。考察影響海藻酸鈣及其共混改性復(fù)合膜的滲透性影響因素,開展了以下工作:1.研究海藻酸鈣薄膜及其共混改性復(fù)合膜的制備及其表征。以海藻酸鈉、氯化鈣、殼聚糖、糊精為原料制備海藻酸鈣及其復(fù)合膜。FTIR結(jié)果顯示,在海藻酸鈣體系中加入殼聚糖后,特征吸收峰發(fā)生了位移,表明殼聚糖的游離氨基與海藻酸鈉的羧基發(fā)生了相互作用,再在此基礎(chǔ)上加入糊精后,薄膜的紅外光譜無(wú)明顯變化,說明加入的糊精并不與海藻酸鈣、殼聚糖發(fā)生化學(xué)反應(yīng)。通過SEM掃描結(jié)果分析,單純的海藻酸鈣薄膜表面有明顯的孔洞,孔洞數(shù)量為10個(gè),大小為0.5μm,加入殼聚糖后及糊精后,復(fù)合膜表面細(xì)密,無(wú)明顯孔洞,斷面圖可以看到,它不同于純海藻酸鈣薄膜斷面,其斷面層一層一層的,像一束一束的纖維堆疊在一起,并沒有交錯(cuò)鏈接,表面較為光滑。添加糊精后,薄膜表面同樣細(xì)密,從其斷面圖可以看到,不像海藻酸鈣/殼聚糖薄膜斷面層層堆疊,而是一層一層的交錯(cuò)縱橫的連接在一起,緊密結(jié)合,從橫截面還能看到界面上有細(xì)小的顆粒狀,有可能是糊精顆粒填充進(jìn)海藻酸鈣-殼聚糖體系中。2.對(duì)影響海藻酸鈣及其復(fù)合膜的水蒸氣滲透系數(shù)進(jìn)行研究。結(jié)果顯示,影響海藻酸鈣薄膜的水蒸氣擴(kuò)散系數(shù)(WVP)最大的是與海藻酸鈉交聯(lián)的鈣離子濃度,其次是交聯(lián)時(shí)間。氯化鈣交聯(lián)時(shí)間從10min~50min進(jìn)行考察,10min固化時(shí)WVP為1.2057×10-6 g/(m·h·Pa),20min時(shí),WVP降低到8.3474×10-6 g/(m·h·Pa),20min后海藻酸鈣薄膜WVP減小速度趨于平緩,對(duì)比20min時(shí),交聯(lián)50min的海藻酸鈣薄膜WVP僅僅降低了3%。交聯(lián)劑氯化鈣的濃度從10g/L~50g/L進(jìn)行考察,鈣離子濃度為50g/L時(shí)WVP能下降到8.0244×10-6 g/(m·h·Pa),對(duì)比10g/L鈣離子固化的薄膜,WVP降低了25%,而海藻酸鈉的濃度對(duì)海藻酸鈣薄膜WVP并無(wú)太大的影響,海藻酸鈉濃度從1%增加到3%,水蒸氣擴(kuò)散系數(shù)從8.0087×10-6 g/(m·h·Pa)減小到7.9071×10-6 g/(m·h·Pa),僅減小了1%。通過實(shí)驗(yàn)得出海藻酸鈣薄膜體系最優(yōu)條件下得出水蒸氣透過率為8.0244×10-6 g/(m·h·Pa)。在此基礎(chǔ)上,添加殼聚糖,使其與海藻酸鈉發(fā)生聚電解質(zhì)反應(yīng),形成海藻酸鈣-殼聚糖共混膜。殼聚糖的濃度從0~1%范圍考察,濃度為0.75%時(shí)薄膜的WVP較純海藻酸鈣薄膜降低了10%,為了進(jìn)一步增加膜的致密性,減小WVP,在海藻酸鈣-殼聚糖復(fù)合膜中添加小分子的糊精作為填充劑,制備海藻酸鈣-殼聚糖-糊精復(fù)合膜。在海藻酸鈣-殼聚糖-糊精復(fù)合膜中白糊精濃度從0~2%范圍考察,白糊精濃度為2%時(shí),WVP降低了7.4%。3.利用Valia-Chien擴(kuò)散池對(duì)海藻酸鈣及其改性復(fù)合膜對(duì)四種香味物質(zhì)的擴(kuò)散性進(jìn)行研究,并用靜態(tài)頂空-氣相色譜-質(zhì)譜連用方法定量檢測(cè),分別考察海藻酸鈣-殼聚糖、海藻酸鈣-殼聚糖-糊精共混改性復(fù)合膜的組成對(duì)上述四種香味物質(zhì)的滲透速率的影響。在海藻酸鈣-殼聚糖復(fù)合膜中,需要考察的因素有殼聚糖濃度,隨著水溶性殼聚糖的濃度增加,正丙醇、乙酸乙酯、正丁醇、丁酸乙酯在復(fù)合膜中的滲透速率越來(lái)越小,正丙醇、乙酸乙酯、正丁醇、丁酸乙酯在純海藻酸鈣膜中的擴(kuò)散系數(shù)為3.18953×10-11 m2/s、1.733×10-11 m2/s、2.4638×10-11 m2/s、6.9553×10-12 m2/s,添加量為0.75%時(shí),四種香味化合物正丙醇、乙酸乙酯、正丁醇、丁酸乙酯在海藻酸鈣薄膜中擴(kuò)散系數(shù)為2.2426×10-11 m2/s、1.2994×10-11m2/s、1.7542×10-11 m2/s、5.6030×10-12 m2/s,擴(kuò)散系數(shù)分別降低了29.69%、25.02%、28.80%、19.44%。在海藻酸鈣-殼聚糖體系的基礎(chǔ)上,加入麥芽糊精,制備海藻酸鈣-殼聚糖-麥芽糊精復(fù)合膜,對(duì)其添加濃度從0~3%進(jìn)行考察,當(dāng)麥芽糊精添加量為2%時(shí),海藻酸鈣-殼聚糖復(fù)合膜,其四種香味物質(zhì)正丙醇、乙酸乙酯、正丁醇、丁酸乙酯的擴(kuò)散系數(shù)分別降低了15%、19.38%、16.78%、14.4%。4.除了考察海藻酸鈣/殼聚糖/糊精復(fù)合膜中組分配比外,還考察了其他因素對(duì)其香味化合物擴(kuò)散系數(shù)的影響:滲透液基質(zhì)液體、糊精的種類、殼聚糖脫乙酰度、接收液中加入鈣離子;實(shí)驗(yàn)用辛癸酸甘油酯配置與滲透液濃度相同的香味物質(zhì)油溶液作為滲透液,對(duì)比同一濃度下,水作為基質(zhì)配置的滲透液和油作為基質(zhì)配置的滲透液中香味化合物的擴(kuò)散系數(shù),結(jié)果得出,正丙醇的擴(kuò)散系數(shù)沒有太大影響,而乙酸乙酯、正丁醇、丁酸乙酯的擴(kuò)散系數(shù)分別降低了70%、25%、73%。不同類型的糊精替換麥芽糊精進(jìn)行考察,選擇β-環(huán)糊精、白糊精進(jìn)行對(duì)比,結(jié)果顯示β-環(huán)糊精的添加對(duì)于香味化合物的擴(kuò)散系數(shù)的保香效果好于麥芽糊精和白糊精,乙酸乙酯、正丁醇、丁酸乙酯的擴(kuò)散系數(shù)分別降低58.14%、45.5%、21.5%。
[Abstract]:Alginate is a natural polysaccharide extracted from brown algae plants, is an abundant and environmentally friendly marine biological resources. With the development of material science and biomedicine, more and more scholars began to study the sodium alginate and its application prospect is very broad. In this paper, the aqueous solution of sodium alginate as the film-forming agent, the calcium ion crosslinking agent by solvent evaporation method, calcium alginate film was prepared by adding chitosan, cyclodextrin, preparation of blend modified composite membrane. The influencing factors on the permeability effect of composite membrane modified calcium alginate and its blends, we conducted the following work: preparation of composite membrane modified calcium alginate film and 1. of its blends characterized by sodium alginate, calcium chloride and chitosan, dextrin as raw material to prepare calcium alginate composite membrane and.FTIR results showed that the addition of chitosan in calcium alginate system, characteristic absorption peak of the displacement That shows the interaction between free amino and carboxyl groups of alginate chitosan, then adding dextrin, the infrared spectra of the films has no obvious change, which indicates that adding dextrin is not with calcium alginate, chitosan chemical reaction. By analyzing the results of SEM scanning, the surface of pure calcium alginate film with visible hole the hole, number 10, size 0.5 m, after adding chitosan and dextrin, the surface of the composite membrane is fine, no obvious hole section can be seen, it is different from the pure calcium alginate film section, the section of layers, stacked like fiber bunches together. And there is no cross link, the surface is smooth. After adding dextrin, the film surface also fine, from the cross section can be seen as calcium alginate / chitosan film profile layers of the stack, but a layer of crisscross together From the cross section, closely, but also to see a small interface on the granular, possibly into calcium alginate chitosan particles filled dextrin.2. in the system of water vapour permeability coefficient and the effect of calcium alginate composite membrane. The results showed that the effect of water vapor diffusion coefficient of calcium alginate film (WVP) is the largest the concentration of calcium ion and sodium alginate cross-linked, followed by cross-linking time. Calcium chloride crosslinking time were investigated from 10min~50min, 10min curing WVP 1.2057 * 10-6 g/ (m h Pa), 20min, WVP reduced to 8.3474 * 10-6 g/ (m h Pa), 20min WVP reduced calcium alginate film slowly, compared with 20min, calcium alginate film WVP crosslinked 50min only reduces the concentration of 3%. crosslinking agent of calcium chloride were investigated from 10g/L~50g/L, calcium ion concentration of 50g/L WVP decreased to 8.0244 x 10-6 g/ (m h Pa), compared with 10g/L calcium Film ion curing, WVP decreased by 25%, while the influence of the concentration of sodium alginate and calcium alginate film is too big for WVP no, sodium alginate concentration increased from 1% to 3%, the diffusion coefficient of water vapor from 8.0087 * 10-6 g/ (m h Pa) is reduced to 7.9071 * 10-6 g/ (M H Pa) only. Reduce the 1%. through the experiment of calcium alginate film system under optimal conditions of water vapor transmission rate of 8.0244 * 10-6 g/ (M - H - Pa). On this basis, adding chitosan, the polyelectrolyte reaction and formation of sodium alginate, calcium alginate chitosan blend membrane. The concentration of chitosan from the perspective of 0~1% the scope of concentration decreased by 10% to 0.75% compared with the pure calcium alginate film WVP film, in order to further increase the compactness of the film decreases WVP, adding small molecule dextrin in calcium alginate chitosan composite membrane as filler, preparation of calcium alginate chitosan cyclodextrin composite film in the sea. The white dextrin concentration of calcium alginate - chitosan - cyclodextrin composite membrane is investigated from the 0~2% range, the white dextrin concentration is 2%, WVP decreased by 7.4%.3. using Valia-Chien diffusion pool of calcium alginate and its modified composite membrane diffusion of four kinds of flavor substances were studied. The quantitative mass spectrometry method is used for static headspace gas chromatography chromatography detection, respectively. The effect of calcium alginate chitosan, effect of calcium alginate chitosan composite film composed of modified cyclodextrin blend of the four kinds of flavor substances. In the permeation rate of calcium alginate chitosan composite membrane, need to study the factors of chitosan concentration, with the increase of the concentration of water soluble chitosan is alcohol, ethyl acetate, n-butanol, ethyl butyrate and permeation rate in the composite film of the smaller, n-propyl alcohol, ethyl acetate, n-butanol, ethyl butyrate diffusion coefficient in pure calcium alginate film in 3.18953 * 10-11 m2/s, 1.7 33 * 10-11 * 10-11 m2/s, 2.4638 m2/s, 6.9553 x 10-12 m2/s, adding 0.75%, four kinds of aroma compounds of n-propanol, n-butanol, ethyl acetate, ethyl butyrate in calcium alginate film diffusion coefficient was 2.2426 * 10-11 m2/s, 1.2994 x 10-11m2/s, 1.7542 x 10-11 x 10-12 m2/s, 5.6030 m2/s, 29.69% the diffusion coefficient decreases, respectively 25.02%, 28.80%, 19.44%. based on calcium alginate chitosan system, adding maltodextrin, preparation of calcium alginate - chitosan - maltodextrin composite membrane, the concentration of maltodextrin from 0~3%, when the dosage is 2%, calcium alginate chitosan composite the film, the aroma substances of n-propanol, n-butanol, ethyl acetate, ethyl butyrate diffusion coefficients were decreased by 15%, 19.38%, 16.78%, 14.4%.4. in addition to study calcium alginate / chitosan / cyclodextrin composite film group distribution ratio, it also examines other factors on the Effect of aroma compounds: penetrant diffusion coefficient matrix liquid, dextrin type, the degree of deacetylation of chitosan and calcium receiving liquid; experimental wasdescribed configuration and penetration of aroma oil solution concentration the same as permeate, compared with the same concentration, as water penetration liquid and oil matrix as the configuration of the diffusion coefficient, the configuration of the aroma permeate matrix compounds showed that diffusion coefficient of n-propanol has little effect, while ethyl acetate, n-butanol, ethyl butyrate diffusion coefficients were decreased by 70%, 25%, 73%. Different types of dextrin replace malt dextrin were investigated. The choice of beta cyclodextrin and the white dextrin were compared, the results showed that with the addition of beta cyclodextrin to the diffusion coefficient of aroma compounds of incense is better than maltodextrin and white dextrin, ethyl acetate, n-butanol, the diffusion coefficient of Ding Suanyi ester respectively. Reduce 58.14%, 45.5%, 21.5%.
【學(xué)位授予單位】:貴州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB383.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔣興仁;海藻及海藻酸的性質(zhì)和應(yīng)用[J];食品工業(yè)科技;1982年03期
2 任麗;陳曉鳳;;聚吡咯/海藻酸鈣導(dǎo)電微球的制備與表征[J];精細(xì)化工;2008年12期
3 包永華;董明盛;;液芯海藻酸鈣包囊固定化技術(shù)[J];中國(guó)釀造;2008年21期
4 俞定安;海藻酸鈣固定化產(chǎn)黃青霉菌株的形態(tài)學(xué)及其在青霉素發(fā)酵上的應(yīng)用[J];國(guó)外藥學(xué)(抗生素分冊(cè));1987年01期
5 楊勵(lì)生;曹淑娟;;提高海藻酸鈣凝膠球強(qiáng)度的試驗(yàn)[J];江蘇食品與發(fā)酵;1988年03期
6 衣洪福;任東文;包德才;雄鷹;姚文艷;王為;馬小軍;;放射自顯影海藻酸鈣栓塞微球的制備[J];功能材料;2006年12期
7 吳文果;黃曉楠;王士斌;妮莎;劉源崗;;乳化法制備海藻酸鈣/聚組氨酸微膠囊[J];化工進(jìn)展;2009年04期
8 王華明;王旭偉;盧凌彬;林承躍;;海藻酸鈣軟骨材料的凝膠化過程研究[J];化工科技;2009年03期
9 金離塵;海藻纖維(Alginate Rayons)[J];紡織導(dǎo)報(bào);1988年14期
10 劉丹;王鵬程;劉昕;李明光;齊憲榮;;多柔比星海藻酸鈣微球的制備及其載藥、釋藥性質(zhì)的研究[J];中國(guó)新藥雜志;2006年15期
相關(guān)會(huì)議論文 前10條
1 李欣;陳立仁;;海藻酸鈣凝膠粒子的制備與性能研究[A];甘肅省化學(xué)會(huì)二十六屆年會(huì)暨第八屆中學(xué)化學(xué)教學(xué)經(jīng)驗(yàn)交流會(huì)論文集[C];2009年
2 石軍;劉小培;孫希孟;曹少魁;;溫度響應(yīng)雜化海藻酸鈣微球的智能性藥物釋放[A];2009年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(下冊(cè))[C];2009年
3 徐飛海;王士斌;侯越;黃曉楠;翁連進(jìn);;海藻酸鈣/聚組氨酸微膠囊體外釋放性能的初步考察[A];中國(guó)生物醫(yī)學(xué)工程學(xué)會(huì)第六次會(huì)員代表大會(huì)暨學(xué)術(shù)會(huì)議論文摘要匯編[C];2004年
4 許培;王翔;;海藻酸鈣水凝膠微球懸浮液的流變學(xué)特性及其影響因素的研究[A];第十屆全國(guó)生物力學(xué)學(xué)術(shù)會(huì)議暨第十二屆全國(guó)生物流變學(xué)學(xué)術(shù)會(huì)議論文摘要匯編[C];2012年
5 成洪波;應(yīng)方微;魏花;李志;;兔眼球后注射海藻酸鈣—?dú)ぞ厶恰T逅徕}微囊的組織相容性研究[A];中華醫(yī)學(xué)會(huì)第十二屆全國(guó)眼科學(xué)術(shù)大會(huì)論文匯編[C];2007年
6 許培;王翔;;海藻酸鈣水凝膠微球懸浮液與全血的流變學(xué)性質(zhì)比較[A];第十屆全國(guó)生物力學(xué)學(xué)術(shù)會(huì)議暨第十二屆全國(guó)生物流變學(xué)學(xué)術(shù)會(huì)議論文摘要匯編[C];2012年
7 王敬花;陳龍煈;孟祥英;孫紅;趙修松;;海藻酸鈣多孔結(jié)構(gòu)薄膜的制備[A];中國(guó)化學(xué)會(huì)第十二屆膠體與界面化學(xué)會(huì)議論文摘要集[C];2009年
8 馮仁蕊;歐陽(yáng)五慶;趙元;;二氫吡啶海藻酸鈣凝膠小球的制備工藝研究[A];中國(guó)畜牧獸醫(yī)學(xué)會(huì)獸醫(yī)藥理毒理學(xué)分會(huì)第十次研討會(huì)論文摘要集[C];2009年
9 喻翠云;殷博成;柳明;程巳雪;卓仁禧;;海藻酸鈣微粒給藥體系對(duì)抗腫瘤藥物的緩釋研究[A];2007年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集(下冊(cè))[C];2007年
10 張爭(zhēng)爭(zhēng);石軍;齊雯妍;曹少魁;;高濃度CO_2下海藻酸鈣/CaCO_3仿生礦化微球的可控[A];2011年全國(guó)高分子學(xué)術(shù)論文報(bào)告會(huì)論文摘要集[C];2011年
相關(guān)重要報(bào)紙文章 前1條
1 記者 葉桂華 通訊員 張莉 周靜;我市企業(yè)一專利喜獲國(guó)家特別金獎(jiǎng)[N];泰州日?qǐng)?bào);2007年
相關(guān)博士學(xué)位論文 前5條
1 榮晶晶;凝血酶-海藻酸鈣復(fù)合介入栓塞止血?jiǎng)┑难兄萍皯?yīng)用基礎(chǔ)研究[D];第三軍醫(yī)大學(xué);2015年
2 郝曉麗;海藻酸鈣凍干膜及海藻酸鈣基互穿網(wǎng)絡(luò)膜材料的制備與性能研究[D];青島大學(xué);2010年
3 劉袖洞;膜乳化內(nèi)部凝膠化過程及海藻酸鈣凝膠珠性能研究[D];中國(guó)科學(xué)院研究生院(大連化學(xué)物理研究所);2002年
4 陳益清;海藻酸-殼聚糖-海藻酸離子取代凝膠[D];天津大學(xué);2003年
5 譚榮偉;海藻酸基可注射骨修復(fù)材料的研究[D];清華大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 饒平;雙網(wǎng)絡(luò)水凝膠的制備及其力學(xué)行為研究[D];浙江大學(xué);2015年
2 劉梅;基于離心微流控系統(tǒng)制備海藻酸鈣粒子的研究[D];東北大學(xué);2014年
3 葉世著;海藻酸鈣及其共混改性復(fù)合膜的滲透性研究[D];貴州大學(xué);2015年
4 林志群;載納米銀海藻酸鈣制備、抗菌性能、促創(chuàng)面愈合及生物相容性的研究[D];南方醫(yī)科大學(xué);2016年
5 劉燕華;生物纖維素/海藻酸復(fù)合膜的制備及性能研究[D];武漢紡織大學(xué);2011年
6 吳燕;海藻酸銅纖維結(jié)構(gòu)性能及抗菌機(jī)理研究[D];青島大學(xué);2011年
7 聞林剛;基于配位作用的海藻酸鑭纖維的制備[D];東華大學(xué);2016年
8 汪濤;海藻酸鈣敷料促進(jìn)大鼠創(chuàng)面愈合的作用及機(jī)制研究[D];蘇州大學(xué);2015年
9 袁磊;半乳糖化殼聚糖/海藻酸鈣肝組織工程支架材料的研究[D];武漢理工大學(xué);2007年
10 李陽(yáng);基于海藻酸鈣水凝膠的多層球的制備及應(yīng)用研究[D];中國(guó)海洋大學(xué);2012年
,本文編號(hào):1600702
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1600702.html