超重力強(qiáng)化制備納米聚苯胺及其功能化復(fù)合材料研究
本文選題:超重力旋轉(zhuǎn)床 切入點(diǎn):聚苯胺 出處:《北京化工大學(xué)》2015年博士論文 論文類型:學(xué)位論文
【摘要】:納米聚苯胺因具有原料易得、合成簡便、良好的導(dǎo)電性、獨(dú)特的氧化還原特性、相對較好的溶解性等特點(diǎn),引起了人們的廣泛重視和研究。化學(xué)氧化聚合法是可規(guī);苽浼{米聚苯胺的重要方法之一,而超重力是重要的化工過程強(qiáng)化新技術(shù)。建立在這兩種技術(shù)基礎(chǔ)之上,本課題組成功首創(chuàng)了超重力化學(xué)氧化聚合法(簡稱超重力法),成為可規(guī)模化合成高性能納米聚苯胺纖維的一個(gè)新方法。為了進(jìn)一步優(yōu)化工藝并提高產(chǎn)品性能,本論文研究了不同工藝對超重力法制備聚苯胺過程和產(chǎn)品性能的影響及影響機(jī)理,確定以超重力間歇工藝為主要研究對象,并以此為基礎(chǔ),研究添加劑對該制備過程和所得產(chǎn)品性能的影響和機(jī)理,得到了形貌和性能優(yōu)異的聚苯胺納米纖維及聚苯胺復(fù)合材料。主要研究內(nèi)容如下:1.考察了超重力法制備聚苯胺工藝對產(chǎn)品的影響,結(jié)果表明:采用超重力間歇工藝得到了聚苯胺納米纖維,與機(jī)械攪拌法所得產(chǎn)品相比,該產(chǎn)品的組成、結(jié)構(gòu)、分子量以及電化學(xué)穩(wěn)定性等區(qū)別不大,但比表面積(49.1 m2/g)和電導(dǎo)率(108.1 S/m)分別增大了26.2%和15.2%,提高了聚苯胺在電化學(xué)反應(yīng)時(shí)的有效利用率和電子傳導(dǎo)速率,使比電容(667.6 F/g)增大了77.6%。采用了超重力循環(huán)工藝制備出了邊長為100-150 nm的立方體聚苯胺納米顆粒,隨溫度升高該顆粒有向纖維轉(zhuǎn)變的趨勢。在干燥的過程中該顆粒會(huì)發(fā)生二次團(tuán)聚,形成聚苯胺纖維。這種立方體顆粒的形成可能是由于超重力旋轉(zhuǎn)床中強(qiáng)烈的混合作用打破了聚苯胺顆粒組裝成聚苯胺纖維的過程。由于間歇工藝的重復(fù)性和產(chǎn)品的比表面積較高,對聚苯胺導(dǎo)電性和電化學(xué)性能有直接影響,因此選擇超重力間歇法作為后續(xù)研究的基礎(chǔ)。2.為改善聚苯胺納米纖維的形貌及性能,采用N-苯基對苯二胺(AD)和對苯二胺(AP)作為添加劑,考察了添加劑用量、反應(yīng)溫度、旋轉(zhuǎn)床轉(zhuǎn)速等對產(chǎn)品性能的影響。結(jié)果表明:AD和AP均能促進(jìn)聚苯胺纖維的生長,所得聚苯胺的平均長徑比最高分別可達(dá)19.4和37.4,比電容最高分別為527.5和552 F/g。比電容增大的原因是這兩種添加劑的氧化電勢較低,先于苯胺成核,加速反應(yīng)的進(jìn)行,使超重力旋轉(zhuǎn)床中的聚合反應(yīng)更趨近于均相成核,得到高長徑比的聚苯胺纖維,從而提高聚苯胺在電化學(xué)反應(yīng)中的有效利用率和電子傳輸速率。此外,添加劑的分子結(jié)構(gòu)對產(chǎn)品的形貌也有重要影響。3.以多壁碳納米管為添加劑,研究它對超重力法制備納米聚苯胺過程的影響和影響機(jī)理,考察了多壁碳納米管含量、碳納米管表面官能團(tuán)等因素對產(chǎn)品形貌及導(dǎo)電性能的影響,得到了聚苯胺/多壁碳納米管復(fù)合材料。結(jié)果表明:聚苯胺在多壁碳納米管上可包覆形成均勻的核殼結(jié)構(gòu)(直徑30-50 nm)。接枝在多壁碳納米管上的苯胺基團(tuán)參與了苯胺的聚合,并與聚苯胺之間形成共價(jià)鍵。多壁碳納米管的加入形成了導(dǎo)電通道,可使聚苯胺的電導(dǎo)率增大9倍。與機(jī)械攪拌法相比,超重力法由于其良好的微觀混合作用,有利于獲得包覆均勻的產(chǎn)品。4.以石墨烯為添加劑,研究它對超重力法制備納米聚苯胺過程的影響和影響機(jī)理,考察了石墨烯含量、苯胺濃度、氧化劑/苯胺摩爾比等因素對產(chǎn)品性能的影響,得到了聚苯胺/石墨烯復(fù)合材料。結(jié)果表明:聚苯胺在石墨烯片層上可形成均勻的包覆層,厚度可在20-40nm之間調(diào)節(jié)。由于聚苯胺和石墨烯之間的協(xié)同效應(yīng),所得產(chǎn)品的比電容達(dá)到403 F/g,較純聚苯胺提高了26%。在保證石墨烯分散良好的情況下,提高苯胺濃度對產(chǎn)品性能影響不大。在適當(dāng)?shù)难趸瘎┯昧肯?產(chǎn)品的比電容最高可達(dá)542 F/g。產(chǎn)品的形貌對比電容有較大影響,是因?yàn)榫鶆蚯冶〉陌矊幽鼙┞冻龈嗟木郾桨繁砻?提高聚苯胺在電化學(xué)反應(yīng)中的有效利用率。
[Abstract]:Because nanopolyaniline has easy to obtain material, easy synthesis, good conductivity, unique redox properties, relative solubility characteristics such as good, has attracted wide attention and research. Chemical oxidative polymerization is one of the important methods for large-scale preparation of nano polyaniline, and super gravity is a new technology of chemical process an important enhancement. Based on these two kinds of technology foundation, the research group successfully pioneered the high gravity chemical oxidative polymerization (referred to as hgcop), has become a new method for large-scale synthesis of high performance nano polyaniline fiber. In order to further optimize the process and improve the performance of the products, we have investigated the mechanism of different effect of process parameters on the super gravity polyaniline prepared process and product performance and effect, in order to determine the high gravity batch process as the main research object, and based on this, the research on the preparation process of additive preparation Influence and mechanism and the performance of the product, the morphology and performance of polyaniline nanofibers and polyaniline composite materials. The main contents are as follows: 1. the effects of polyaniline process on the impact of products, the results showed that super gravity method: using high gravity batch process by polyaniline nanofibers, compared with mechanical mixing method of the product the product, composition, structure, molecular weight and electrochemical stability of the difference is not big, but the specific surface area (49.1 m2/g) and electrical conductivity (108.1 S/m) were increased by 26.2% and 15.2%, improve the effective utilization rate of poly aniline and electronic conduction in the electrochemical reaction, the specific capacitance (667.6 F/g). 77.6%. uses a super gravity circulation process to fabricate the polyaniline nanoparticles cube side length of 100-150 nm, with the increase of the temperature of the particles to the fiber change trend in the dry. Two of the particles will reunite in the process of forming polyaniline fiber. Formation of this cube particles may be due to the strong mixing effect in RPB has broken the polyaniline particles assembly process of polyaniline fiber. Because of the repeated batch process and product of the high specific surface area, has a direct effect on the conductivity of Polyaniline and the electrochemical properties, so the choice of super gravity batch method as the basis for further research of.2. morphology and improve the performance of polyaniline nanofibers, using N- phenyl-p-phenylene two amine (AD) and two of benzene amine (AP) as additive, effects of additive dosage, reaction temperature, influence of rotating speed on the properties of the product. The results showed that AD and AP could promote the growth of polyaniline fibers, the average length of the PANI diameter ratio respectively 19.4 and 37.4, the highest specific capacitance were 527.5 F/ and 552 g. capacitance The reason is the increased oxidation potential of the two kinds of additives is low, prior to aniline nucleation, accelerate the reaction, the polymerization reaction is more close to the high gravity rotating bed in homogeneous nucleation, high aspect ratio of the polyaniline fiber, thereby improving the electrochemical reaction of Polyaniline in the effective utilization rate and electron transport rate. In addition, the molecular structure of additives on the morphologies of the products also have an important influence on.3. multi walled carbon nanotubes as additives and study its effect on the preparation of nano polyaniline super gravity process and influence mechanism, effects of multi walled carbon nanotubes content, effect of carbon nanotubes surface functional groups on the product morphology and conductive properties, get polyaniline / multi walled carbon nanotubes composites. The results showed that polyaniline in multi walled carbon nanotubes can be coated to form a core-shell structure with uniform (30-50 nm diameter). The grafted multi walled carbon nanotubes Tube in the aniline radical polymerization of aniline, the formation of a covalent bond between and polyaniline. The addition of MWNTs to form a conductive channel, the conductivity of polyaniline increased 9 times. Compared with mechanical mixing method, high gravity method due to its good micromixing effect, is beneficial to obtain evenly coated products.4. with graphene as additives to study its effect on the preparation of nano polyaniline super gravity process and influence mechanism, effects of the content of graphene, the concentration of aniline, oxidant / aniline molar ratio on the performance of the product, the polyaniline / graphene composite materials. The results showed that polyaniline can form a uniform coating on graphene layers, the thickness can be adjusted between 20-40nm. Due to the synergistic effect between polyaniline and graphene, the specific capacitance of 403 F/g, increased by 26%. in a pure Polyaniline Ensure the graphene dispersion is good, increase the concentration of aniline has little effect on the performance of the product. The amount of oxidant under the proper ratio of the product morphology contrast capacitance up to 542 F/g. products have a greater impact, because the coating layer is uniform and thin to expose the surface of polyaniline more, improve the effective use of Polyaniline in the electrochemical reaction rate.
【學(xué)位授予單位】:北京化工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TQ340.1;TB33
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張杰;陳瀟;程磊;;不同形態(tài)聚苯胺的研究進(jìn)展[J];硅谷;2011年19期
2 王長松;劉大晨;梁兵;李安東;;聚苯胺復(fù)合導(dǎo)電薄膜的制備及性能[J];應(yīng)用化學(xué);2007年06期
3 戴國瑞,王曉薇,馬哲,南金,王宗昌;聚苯胺薄膜的制備及其C—V特性研究[J];功能材料;1999年05期
4 封偉,劉效增,曹猛,韋瑋,吳洪才;低能離子注入聚苯胺薄膜結(jié)構(gòu)性能研究[J];西安交通大學(xué)學(xué)報(bào);2000年02期
5 鐘發(fā)春;劉蘭;鄭敏俠;王曉川;張曉華;;甲磺酸摻雜聚苯胺的制備和表征[J];材料科學(xué)與工程學(xué)報(bào);2009年01期
6 范海軍;宮超坤;張如根;魏琦;陶雪鈺;吳其曄;;高氯酸摻雜原位沉積聚苯胺薄膜的制備及性能研究[J];塑料科技;2007年07期
7 高學(xué)寧;邵天敏;;聚苯胺薄膜的制備及導(dǎo)電性[J];高分子材料科學(xué)與工程;2008年03期
8 王利祥,王佛松;高性能聚苯胺自支撐膜[J];中國科學(xué)(B輯 化學(xué) 生命科學(xué) 地學(xué));1989年09期
9 王輝,劉效增,吳洪才;染料摻雜聚苯胺半導(dǎo)體薄膜的性能研究[J];西安交通大學(xué)學(xué)報(bào);1999年11期
10 王宏智;劉煒洪;李劍;姚素薇;張衛(wèi)國;;恒電位脈沖法制備聚苯胺薄膜及其表征[J];高等學(xué)校化學(xué)學(xué)報(bào);2012年02期
相關(guān)會(huì)議論文 前10條
1 李華;謝凱;姚萌;盤毅;王琿;;聚苯胺薄膜的制備及其電致變發(fā)射率性能研究[A];中國空間科學(xué)學(xué)會(huì)空間材料專業(yè)委員會(huì)2009學(xué)術(shù)交流會(huì)論文集[C];2009年
2 萬梅香;李明;李軍朝;;取向聚苯胺膜的結(jié)構(gòu)研究[A];首屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];1992年
3 李冀蜀;趙云;沈臨江;楊南如;;反應(yīng)溫度對聚苯胺薄膜生長的影響[A];第六屆中國功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(2)[C];2007年
4 李劍;張智賢;姚素薇;張衛(wèi)國;王宏智;;恒電位法制備聚苯胺薄膜及其表征[A];2009年全國電子電鍍及表面處理學(xué)術(shù)交流會(huì)論文集[C];2009年
5 馬占東;劉萍云;馮堅(jiān);張長瑞;;交替沉積自組裝不同酸摻雜聚苯胺薄膜的光譜及導(dǎo)電性能研究[A];2006年全國功能材料學(xué)術(shù)年會(huì)專輯[C];2006年
6 宋根萍;許華娟;郭榮;;在聚苯乙烯基體上制備聚苯胺疏水薄膜[A];中國化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第12分會(huì)場摘要集[C];2012年
7 蘇青;陸云;;D-樟腦磺酸摻雜的聚苯胺薄膜在外電場下的原位UV/Vis以及Raman光譜研究[A];第十五屆全國光散射學(xué)術(shù)會(huì)議論文摘要集[C];2009年
8 馬興法;司振梅;高明軍;徐惠忠;李光;;納米線結(jié)構(gòu)聚苯胺柔性薄膜的電化學(xué)沉積及其響應(yīng)行為[A];2009中國功能材料科技與產(chǎn)業(yè)高層論壇論文集[C];2009年
9 潘力佳;施毅;濮林;竇春萌;張榮;鄭有p,
本文編號(hào):1578955
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1578955.html