一種納米AgCu互連的SiC功率模塊制造工藝和性能研究
發(fā)布時(shí)間:2018-03-05 19:20
本文選題:納米AgCu 切入點(diǎn):燒結(jié)工藝 出處:《哈爾濱工業(yè)大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:隨著電力電子技術(shù)的不斷發(fā)展,以SiC為代表的第三代寬禁帶半導(dǎo)體相比傳統(tǒng)的Si基半導(dǎo)體具備更高的禁帶寬度、擊穿電壓與功率密度,因此必將成為電力電子器件技術(shù)發(fā)展的主流。然而在互連材料方面,現(xiàn)有的封裝材料體系已經(jīng)不能滿(mǎn)足第三代半導(dǎo)體功率器件在高溫工作環(huán)境下的要求。針對(duì)SiC芯片對(duì)粘接材料“低溫互連,高溫服役”的要求,科學(xué)界在納米Ag材料上進(jìn)行了大量的研究,發(fā)現(xiàn)其具備良好的導(dǎo)熱導(dǎo)電性能的同時(shí)也具有孔隙率高以及易電遷移等缺點(diǎn)。因此本文針對(duì)納米Ag的這些缺點(diǎn),引入了Cu進(jìn)行互補(bǔ),研究納米AgCu材料的燒結(jié)性能以及其在SiC器件中的實(shí)際應(yīng)用性能。本文采用水溶液化學(xué)還原法制備納米AgCu二元合金顆粒,并通過(guò)添加有機(jī)溶劑混合制成納米焊膏,重點(diǎn)圍繞納米AgCu焊膏的燒結(jié)工藝,性能以及在器件中的應(yīng)用展開(kāi)研究。首先在不同工藝條件下用納米AgCu焊膏燒結(jié)連接Cu-Cu接頭,探索燒結(jié)溫度,燒結(jié)時(shí)間,燒結(jié)壓力三個(gè)因素對(duì)燒結(jié)組織的影響規(guī)律,并找到最佳工藝參數(shù)。為了探索納米AgCu焊膏在實(shí)際應(yīng)用中的表現(xiàn),設(shè)計(jì)并制造了使用該焊膏互連的SiC全橋功率驅(qū)動(dòng)模塊,對(duì)模塊的高溫工作性能進(jìn)行測(cè)試判斷其高溫服役穩(wěn)定性。此外,加入兩種對(duì)比連接材料對(duì)SiC功率芯片互連,通過(guò)比較判斷在實(shí)際的器件應(yīng)用中納米AgCu的表現(xiàn)。最后,對(duì)納米AgCu連接的芯片試驗(yàn)和Cu接頭進(jìn)行了高低溫沖擊循環(huán)和高溫老化試驗(yàn)以研究納米AgCu的可靠性。研究發(fā)現(xiàn)時(shí)間和溫度是影響燒結(jié)組織性能的最重要的因素,當(dāng)制備焊膏的納米AgCu顆粒平均粒徑為10nm時(shí),燒結(jié)溫度必須大于250℃納米顆粒才能有效燒結(jié)融合,而保溫時(shí)間越長(zhǎng)則納米AgCu燒結(jié)接頭的組織越致密。相比之下,壓力的影響要小一些,當(dāng)壓力大于5MPa后,再施加更大的壓力,接頭的力學(xué)性能的增強(qiáng)有限。對(duì)燒結(jié)后的納米AgCu樣品進(jìn)行導(dǎo)電導(dǎo)熱性能測(cè)試,測(cè)得電阻率最低可達(dá)到6.1μΩ·cm,導(dǎo)熱系數(shù)最高可達(dá)到94.9 W/m K,能夠滿(mǎn)足大功率SiC工作的需求。最后在可靠性試驗(yàn)中發(fā)現(xiàn)該種焊膏燒結(jié)后殘留的有機(jī)物對(duì)可靠性影響較大,所以其制備和燒結(jié)工藝還需要進(jìn)一步研究改善。
[Abstract]:With the development of power electronics technology, the third generation wide band gap semiconductor, represented by SiC, has higher band gap, breakdown voltage and power density than traditional Si based semiconductor. Therefore, it will become the mainstream of the development of power electronic device technology. However, in the aspect of interconnection materials, The existing packaging material system can no longer meet the requirements of the third generation semiconductor power devices in the high-temperature working environment. For the SiC chip for bonding materials "low temperature interconnection, high temperature service" requirements, A great deal of scientific research has been done on nano-Ag materials, and it is found that the nano-Ag materials have good thermal conductivity and high porosity and easy electromigration. Therefore, in this paper, Cu is introduced to complement each other in view of these shortcomings of nano-Ag. The sintering properties of nano-sized AgCu materials and their practical application in SiC devices were studied. In this paper, nano-sized AgCu binary alloy particles were prepared by chemical reduction method in aqueous solution, and nano-solder paste was prepared by adding organic solvents. The research focuses on the sintering process, properties and application in the device of nanometer AgCu solder paste. Firstly, the Cu-Cu joint is sintered with nanometer AgCu solder paste under different technological conditions, and the sintering temperature and sintering time are explored. In order to explore the performance of nano-sized AgCu solder paste in practical application, a full-bridge power driving module of SiC interlinked with the paste was designed and manufactured. The high temperature service stability of the module is determined by testing its performance at high temperature. In addition, two kinds of contrast connecting materials are added to interconnect the SiC power chip, and the performance of nanometer AgCu in practical device application is judged by comparison. Finally, The high and low temperature impact cycling and high temperature aging tests were carried out to study the reliability of nano AgCu chips and Cu joints. It was found that time and temperature were the most important factors affecting the microstructure and properties of sintering. When the average size of AgCu particles prepared by solder paste is 10 nm, the sintering temperature must be more than 250 鈩,
本文編號(hào):1571543
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1571543.html
最近更新
教材專(zhuān)著