納米多孔銅膜的制備和力學(xué)性能研究
本文關(guān)鍵詞: 納米壓痕 脫合金腐蝕 彈性模量 硬度 出處:《西安理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:近三十年來,隨著納米科技的日趨展開,納米材料因?yàn)槠湟幌盗袃?yōu)良的性能而使其應(yīng)用遍及各個(gè)領(lǐng)域,也獲得了越來越多研究人員的關(guān)注,各國(guó)研究人員都在繼續(xù)為了發(fā)掘納米材料更加優(yōu)良的性能而努力,這些優(yōu)良的性能都離不開表面效應(yīng)的影響。然而至今為止,納米材料相關(guān)的研究仍然有很大的空間值得我們?nèi)ヌ剿。本文針?duì)納米多孔銅薄膜的制備方法和力學(xué)性能做出研究,主要內(nèi)容分為以下三個(gè)方面。首先,分析討論了如何制備納米多孔銅膜的問題。一般鍍膜方式主要采用電化學(xué)沉積法、蒸發(fā)鍍膜、磁控濺射法中的單獨(dú)濺射法等,且主要研究金銀合金。本文采用磁控濺射法中的共濺射法制備出1μm厚的比例為2:8的Cu-Zn前驅(qū)體合金,進(jìn)一步采用酸溶液進(jìn)行脫合金腐蝕,去除掉活性較高的Zn,從而得到納米多孔銅膜。磁控濺射鍍膜可通過調(diào)整電流,電壓,時(shí)間等參數(shù)獲得特定比例的合金薄膜,腐蝕過程必須無菌操作。研究發(fā)現(xiàn)Cu-Zn合金鍍膜以硅片為基底更容易得到理想的薄膜,合金脫合金腐蝕過程中,硫酸的濃度較低時(shí),且采用滴定腐蝕的方式,更容易得到表征良好的薄膜。其次,用納米壓痕儀采用壓入法進(jìn)行實(shí)驗(yàn),壓入薄膜深度為1000nm,測(cè)量納米多孔銅膜力學(xué)性能并進(jìn)行研究。一般關(guān)于納米材料的研究主要是關(guān)于其導(dǎo)電性,導(dǎo)熱性、催化性等性能的研究,本文主要研究力學(xué)性能。實(shí)驗(yàn)測(cè)得納米多孔銅膜的彈性模量和硬度相對(duì)于宏觀塊體銅彈性模量和硬度分別提升了一倍和九倍。所以,納米多孔銅膜相對(duì)于宏觀塊體銅力學(xué)性能有了很大的提升。而且針對(duì)宏觀塊體銅,微觀狀態(tài)納米銅膜,濕潤(rùn)狀態(tài)納米多孔銅膜,干燥狀態(tài)納米多孔銅膜,分別畫出荷載-位移曲線,通過對(duì)比直觀發(fā)現(xiàn),彈性模量和硬度呈現(xiàn)梯度增加,而且多孔結(jié)構(gòu)薄膜相對(duì)與無孔結(jié)構(gòu)薄膜彈性的性能也有了很大提升,由此可見,薄膜孔洞結(jié)構(gòu)有助于提高彈性。最后,運(yùn)用量綱分析法得到適用于薄膜/硅片的冪硬化本構(gòu)模型,結(jié)合ANSYS仿真模擬納米壓痕壓入過程,將實(shí)驗(yàn)所得參數(shù)代入ANSYS中,并設(shè)定10個(gè)荷載步來模擬壓入過程,提取每一步的荷載值代入本構(gòu)模型,最終求解得到納米多孔銅膜的屈服強(qiáng)度和冪硬化指數(shù),從而進(jìn)一步得到薄膜的應(yīng)力應(yīng)變關(guān)系,并且將理論所得的應(yīng)力應(yīng)變關(guān)系代回到ANSYS中,得到變形圖,通過與實(shí)驗(yàn)數(shù)據(jù)對(duì)比發(fā)現(xiàn),仿真所得最大變形值為與實(shí)驗(yàn)所得最大壓入深度值非常接近,所以可認(rèn)為數(shù)據(jù)具有很好的可靠性。最終畫出納米多孔銅膜和宏觀塊體銅的應(yīng)力應(yīng)變曲線進(jìn)行對(duì)比,直觀看出薄膜相對(duì)宏觀材料力學(xué)性能的優(yōu)越性。
[Abstract]:In the past 30 years, with the development of nanotechnology, nanomaterials have been widely used in various fields because of their excellent properties, and have been paid more and more attention by researchers. Researchers from all over the world are continuing their efforts to discover better properties of nanomaterials that can not be separated from the effects of surface effects. There is still a lot of space for us to explore the related research of nano-materials. The preparation method and mechanical properties of nano-porous copper thin films are studied in this paper. The main contents are as follows: first of all, The problems of preparing nano-porous copper films are analyzed and discussed in this paper. The common methods of coating are electrochemical deposition, evaporation deposition, single sputtering in magnetron sputtering, and so on. In this paper, a 1 渭 m thick Cu-Zn precursor alloy with a ratio of 2 渭 m to 8 was prepared by co-sputtering in the magnetron sputtering method, and the alloy was further corroded by acid solution. By removing the highly active Zn2 +, a nano-porous copper film can be obtained. The magnetron sputtering film can be obtained by adjusting the parameters such as current, voltage, time and other parameters to obtain a specific proportion of the alloy film. It is found that Cu-Zn alloy coating on silicon substrate is easier to obtain ideal thin films. When the concentration of sulfuric acid is lower in the process of alloy dealloying, the titration corrosion method is used. It is easier to obtain well characterized films. Secondly, the nanoindentation method is used to carry out the experiments. The depth of the film is 1000 nm, the mechanical properties of nano-porous copper film are measured and studied. Generally, the research on nanomaterials is mainly about their electrical conductivity, thermal conductivity, catalytic properties, etc. In this paper, the mechanical properties of nano-porous copper film are studied. The elastic modulus and hardness of nano-porous copper film are increased by two times and nine times respectively compared with that of macroscopic bulk copper film. The mechanical properties of nano-porous copper films have been greatly improved compared with those of macroscopic bulk copper films, and the nano-porous copper films in macroscopic bulk copper, nano-copper films in micro-state, nano-porous copper films in wetted state, and nano-porous copper films in dry state have been studied. The load-displacement curves were drawn respectively. It was found that the elastic modulus and hardness showed a gradient increase, and the elastic properties of the porous structure film were greatly improved compared with the porous structure film. The pore structure of thin film is helpful to improve the elasticity. Finally, the power hardening constitutive model suitable for thin film / silicon wafer is obtained by using dimensional analysis method, and the experimental parameters are substituted into ANSYS by ANSYS simulation to simulate the indentation process of nanoindentation. Ten load steps were set to simulate the indentation process, and the load values of each step were extracted into the constitutive model. Finally, the yield strength and power hardening exponent of the nano-porous copper film were obtained, and the stress-strain relationship of the film was obtained. In addition, the stress-strain relation obtained by theory is replaced by ANSYS, and the deformation diagram is obtained. By comparing with the experimental data, it is found that the maximum deformation obtained by simulation is very close to the maximum indentation depth obtained by experiment. Finally, the stress-strain curves of nano-porous copper film and macroscopic bulk copper are compared, and the superiority of the film compared with the mechanical properties of macroscopic material can be seen intuitively.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王松林;;船軸的熱處理及其力學(xué)性能[J];大型鑄鍛件;1987年03期
2 ;力學(xué)性能二級(jí)人員取證復(fù)習(xí)參考題(之一)解答[J];理化檢驗(yàn)(物理分冊(cè));1997年12期
3 ;力學(xué)性能二級(jí)人員取證復(fù)習(xí)參考題(之三)解答[J];理化檢驗(yàn)(物理分冊(cè));1998年04期
4 陳金寶;高溫力學(xué)性能二級(jí)人員取證復(fù)習(xí)參考題(持久部分之五)解答[J];理化檢驗(yàn)(物理分冊(cè));2000年02期
5 潘葉金;電弧熔鑄的Nb-18Si-5Mo-5Hf-2C復(fù)合材料的力學(xué)性能[J];中國(guó)鉬業(yè);2003年03期
6 張美忠,李賀軍,李克智;三維編織復(fù)合材料的力學(xué)性能研究現(xiàn)狀[J];材料工程;2004年02期
7 游宇,周新貴;三維編織復(fù)合材料的力學(xué)性能[J];纖維復(fù)合材料;2004年04期
8 羅文波;唐欣;譚江華;趙榮國(guó);;流變材料長(zhǎng)期力學(xué)性能加速表征的若干進(jìn)展[J];材料導(dǎo)報(bào);2007年07期
9 嚴(yán)振宇;徐強(qiáng);朱時(shí)珍;劉穎;;Sm_2Zr_2O_7-ZrB_2/SiC復(fù)合材料的制備及力學(xué)性能研究[J];稀有金屬材料與工程;2011年S1期
10 瞿欣;孫汝n,
本文編號(hào):1534081
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1534081.html