鋁和碳化硅顆粒增強(qiáng)銅基自潤滑復(fù)合材料的制備及性能研究
本文關(guān)鍵詞: 銅基自潤滑復(fù)合材料 組織結(jié)構(gòu) Al含量 SiC含量 摩擦磨損性能 出處:《西南交通大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:銅基自潤滑復(fù)合材料具有良好的導(dǎo)電、導(dǎo)熱和耐磨性能,常被用作為制動(dòng)閘片、接地裝置等。降低銅基復(fù)合材料的生產(chǎn)成本與提高其服役性能具有極為重要的意義。本文通過冷壓-燒結(jié)-復(fù)壓工藝制備了不同Al、β-SiC含量的銅基自潤滑復(fù)合材料,研究Al含量對Cu/Gr(石墨)復(fù)合材料及SiC含量對(Cu-9.5wt%Al)/Gr復(fù)合材料的組織結(jié)構(gòu)、力學(xué)性能、物理性能、摩擦磨損性能和耐蝕性能的影響。向銅基復(fù)合材料中添加Al時(shí),將首先在銅基體中形成α-Cu固溶體,Al含量達(dá)到7.6 wt%時(shí)析出了少量γ2硬脆相,Al含量為9.5 wt%時(shí)基體中析出大量γ2相并成網(wǎng)狀分布;向復(fù)合材料中添加β-SiC顆粒時(shí),將在銅基晶界處產(chǎn)生大量團(tuán)聚,SiC含量越高,團(tuán)聚現(xiàn)象越顯著。Al的添加使復(fù)合材料獲得了較高的宏觀硬度、基體顯微硬度、抗彎強(qiáng)度和抗壓強(qiáng)度,復(fù)合材料的相對密度在Al含量為5.7 wt%時(shí)達(dá)到最高值,其導(dǎo)電性能和塑性隨Al含量增大而不斷減低;SiC顆粒的添加使復(fù)合材料的宏觀硬度、相對密度、電導(dǎo)率、抗彎強(qiáng)度、抗壓強(qiáng)度和塑性降低,其基體顯微硬度在SiC含量為4 wt%時(shí)達(dá)到最大值,為210.9 HV。在干摩擦條件下,隨Al含量增大,摩擦系數(shù)不斷降低,磨損率呈先增加后減小的趨勢,Al含量為9.5 wt%時(shí)復(fù)合材料具有良好的耐磨性;隨SiC含量增大,摩擦系數(shù)逐漸增加,磨損率呈先增加后減小的趨勢,SiC含量為0wt%與6 wt%時(shí)復(fù)合材料具有較好的耐磨性能。在濕摩擦條件下,隨Al含量增大,摩擦系數(shù)先減小后增加,磨損率不斷降低,Al含量同樣為9.5 wt%時(shí)復(fù)合材料具有良好的耐磨性能;隨SiC含量增加,摩擦系數(shù)先減小后增加,磨損率則不斷降低,SiC含量為6 wt%時(shí)復(fù)合材料具有較好的耐磨性能。且相比于干摩擦,濕摩擦?xí)r的摩擦系數(shù)與磨損率均較高。在5%H_2SO_4溶液中,Al含量為9.5 wt%時(shí)復(fù)合材料具有良好的耐蝕性能,β-SiC顆粒的添加將使復(fù)合材料的耐蝕性能減弱。
[Abstract]:Copper-base self-lubricating composites have good electrical conductivity, thermal conductivity and wear resistance, and are often used as brake pads. It is very important to reduce the production cost and improve the service performance of copper matrix composites. In this paper, copper matrix self-lubricating composites with different contents of Al, 尾 -SiC were prepared by cold pressing, sintering and repressing process. The effects of Al content on the microstructure, mechanical properties, physical properties, friction and wear properties and corrosion resistance of Cu / Gr-graphite composites and SiC content on Cu-9.5wtAl / Gr composites were studied. When 偽 -Cu solid solution Al content reached 7.6 wt% in copper matrix, a large amount of 緯 2 phases were precipitated in the matrix when the content of 緯 2 hard brittle phase was 9.5 wt%, and the 尾 -SiC particles were added to the composites. The higher the amount of agglomerated sic at the grain boundary of copper matrix is, the more obvious the agglomeration phenomenon is. The addition of Al makes the composites obtain higher macro hardness, matrix microhardness, flexural strength and compressive strength. The relative density of the composites reaches the highest value when the Al content is 5.7 wt%. The conductivity and plasticity of the composites decrease with the increase of Al content. The macrohardness, relative density, electrical conductivity and bending strength of the composites are decreased with the increase of Al content. With the decrease of compressive strength and plasticity, the microhardness of the matrix reaches the maximum value of 210.9 HV when the content of SiC is 4 wt%. Under dry friction conditions, the friction coefficient decreases with the increase of Al content. The wear rate increased first and then decreased, and the friction coefficient increased with the increase of SiC content, and the wear resistance of the composite was better when the Al content was 9.5 wt%. The wear rate increased firstly and then decreased. The friction coefficient of the composites decreased first and then increased with the increase of Al content under wet friction condition, when the content of sic was 0 wt% and 6 wt%, the wear resistance of the composites was better. The friction coefficient of the composites decreases first and then increases with the increase of SiC content when the wear rate decreases continuously and the content of Al is also 9.5 wt%. On the other hand, the wear rate of the composites decreases continuously when the content of sic is 6 wt%, and the composites have better wear resistance compared with the dry friction. The friction coefficient and wear rate of the composites are higher during wet friction. The composites have good corrosion resistance when the Al content is 9.5 wt% in 5H _ 2SO _ 4 solution, and the corrosion resistance of the composites will be weakened by the addition of 尾 -SiC particles.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB33
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 呂柏林;崔躍;高學(xué)朋;吳敏;劉峰;蘇輝;周文龍;陳國清;;石墨摩擦學(xué)性能、潤滑機(jī)理及改性的研究進(jìn)展[J];材料導(dǎo)報(bào);2015年19期
2 帥歌旺;劉建彬;周平建;;銅合金多元復(fù)合強(qiáng)化研究進(jìn)展[J];熱加工工藝;2015年18期
3 鐘萬里;聶銘;梁永純;馬元泰;李瑛;;在不同pH值模擬酸雨溶液中純銅的腐蝕行為[J];材料研究學(xué)報(bào);2015年01期
4 孫忠剛;高飛;王德慶;;錫對粉末冶金銅基摩擦材料摩擦磨損性能的影響[J];潤滑與密封;2014年12期
5 張堅(jiān);謝斌;趙龍志;胡勇;;高強(qiáng)高導(dǎo)銅合金的強(qiáng)化方法和研究進(jìn)展[J];熱加工工藝;2014年14期
6 范瑛;譚云;陶萍;豐杰;;鈹青銅的性能研究綜述[J];材料導(dǎo)報(bào);2014年S1期
7 李玉娟;王曉偉;任鳳章;李紅霞;魏世忠;;內(nèi)氧化法制備Cu-Al_2O_3復(fù)合材料的組織性能[J];河南科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年01期
8 韓忠;姚斌;盧柯;;納米結(jié)構(gòu)Cu中動(dòng)態(tài)再結(jié)晶主導(dǎo)的磨損機(jī)制[J];金屬學(xué)報(bào);2014年02期
9 趙春;;我國高速鐵路的發(fā)展概況與趨勢探析[J];科技創(chuàng)新與應(yīng)用;2014年01期
10 王振生;張孟恩;楊雙雙;郭建亭;周蘭章;陳志鋼;;NiAl-2.5Ta-7.5Cr-1B合金的微觀組織、力學(xué)性能與摩擦磨損特性[J];金屬學(xué)報(bào);2013年11期
,本文編號:1485967
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1485967.html