基于導(dǎo)模諧振的超高Q太赫茲超材料研究
本文關(guān)鍵詞: 太赫茲 超材料 高Q 導(dǎo)模 出處:《中國(guó)計(jì)量大學(xué)》2016年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:超材料(Metamaterial)是一類(lèi)由亞波長(zhǎng)結(jié)構(gòu)周期性排列的人工復(fù)合材料,由于其特殊的電磁效應(yīng),因而受到廣泛關(guān)注,這些特殊的電磁特性來(lái)自于超材料豐富的諧振效應(yīng)。關(guān)于諧振峰的評(píng)價(jià)指標(biāo)就是品質(zhì)因子(Q值),但是由于受到輻射損耗和金屬歐姆損耗的影響,諧振峰的Q值很難大幅度提高,傳統(tǒng)的獲得高Q值的方法都是基于超材料表面模式建立的,這些方法雖然能在一定程度上壓制輻射損耗,但是效果卻相當(dāng)有限。由于超材料結(jié)構(gòu)的周期性,可以將其等效為一種類(lèi)光柵結(jié)構(gòu),電磁波入射時(shí)也會(huì)產(chǎn)生光柵衍射效應(yīng),此效應(yīng)可將入射電磁波耦合進(jìn)波導(dǎo),激發(fā)導(dǎo)模諧振。這一類(lèi)諧振是由于波導(dǎo)限制電磁波的傳輸而產(chǎn)生,可以極大地抑制能量向自由空間的輻射,實(shí)現(xiàn)諧振峰的超高Q值,這在光柵領(lǐng)域已經(jīng)有相關(guān)報(bào)道證實(shí)。本文首次利用金屬單閉環(huán)在超材料領(lǐng)域引入導(dǎo)模諧振,并研究了各結(jié)構(gòu)參數(shù)對(duì)導(dǎo)模諧振的調(diào)控作用,進(jìn)一步在此基礎(chǔ)上提出了兩種分別以金屬雙閉環(huán)和金屬雙開(kāi)口環(huán)為例的調(diào)控超材料導(dǎo)模以獲得高Q的方法:(1)基本結(jié)構(gòu)單元為兩個(gè)金屬閉環(huán)均勻分布于X方向周期為2d、Y方向周期為d的PI薄膜上,此時(shí)超材料相鄰兩個(gè)金屬環(huán)間中心距均為d,實(shí)際周期也為d,類(lèi)似于一個(gè)均勻的二維光柵。有電磁波入射時(shí),就會(huì)產(chǎn)生光柵衍射效應(yīng),并激發(fā)光柵周期為d的導(dǎo)模。當(dāng)將兩個(gè)金屬閉環(huán)進(jìn)行相向或反向平移(這二者是等價(jià)的)時(shí),就會(huì)造成超材料相鄰兩個(gè)金屬環(huán)間的中心距離不等,引入2d光柵周期并激發(fā)該周期的導(dǎo)模。通過(guò)調(diào)節(jié)平移量可以調(diào)控導(dǎo)模能量在2d光柵周期上的分量(即調(diào)制深度),從而調(diào)節(jié)此導(dǎo)模諧振峰的Q值和幅值。通過(guò)仿真研究,平移量越小,導(dǎo)模諧振峰的Q值越高而幅值越小,仿真中可達(dá)104以上。在此基礎(chǔ)上繼續(xù)討論了波導(dǎo)層厚度對(duì)導(dǎo)模諧振峰的影響,研究發(fā)現(xiàn)波導(dǎo)層材料以選取損耗小厚度薄的為佳。最后,用激光直寫(xiě)化學(xué)鍍銅方法加工了樣品,并用THz-TDS進(jìn)行了測(cè)試,實(shí)驗(yàn)結(jié)果與仿真結(jié)果高度吻合。(2)基本結(jié)構(gòu)單元為兩個(gè)金屬開(kāi)口環(huán)均勻分布于X方向周期為2d、Y方向周期為d的PI薄膜上,其中兩個(gè)環(huán)的開(kāi)口位置分別分布在環(huán)的上部和下部。當(dāng)將兩個(gè)金屬環(huán)以各自環(huán)中心為圓心同時(shí)旋轉(zhuǎn)或者將兩個(gè)金屬環(huán)的開(kāi)口位置進(jìn)行相向或反向平移時(shí),這樣也能引入2d的光柵周期并激發(fā)該周期的導(dǎo)模,與前一種方法的規(guī)律類(lèi)似,旋轉(zhuǎn)角度或平移量越小,導(dǎo)模諧振峰的Q值越高而幅值越小,仿真中同樣獲得了104以上的Q值。另外,還提出了一種調(diào)控基于導(dǎo)模與偶極諧振峰相互作用產(chǎn)生的類(lèi)EIT諧振峰的峰寬調(diào)控方法,并在仿真中給出了調(diào)控的效果。最后,同樣用激光直寫(xiě)化學(xué)鍍銅方法加工了樣品,并用THz-TDS進(jìn)行了測(cè)試,實(shí)驗(yàn)結(jié)果與仿真結(jié)果高度吻合。
[Abstract]:Metamaterial) is a kind of artificial composite which is arranged periodically by subwavelength structure. Because of its special electromagnetic effect, it has been paid more and more attention. These special electromagnetic properties come from the rich resonance effect of metamaterials. The evaluation index of the resonance peak is the Q value of the quality factor, but it is affected by the radiation loss and the metal ohmic loss. The Q value of the resonant peak is difficult to increase greatly. The traditional methods of obtaining high Q value are based on the surface mode of metamaterials, although these methods can suppress the radiation loss to a certain extent. However, the effect is quite limited. Because of the periodicity of the supermaterial structure, it can be equivalent to a kind of grating structure, and the grating diffraction effect will also occur when the electromagnetic wave is incident, which can couple the incident electromagnetic wave into the waveguide. This type of resonance is caused by the waveguide limiting the transmission of electromagnetic waves, which can greatly suppress the energy radiation to the free space and achieve the high Q value of the resonance peak. This has been confirmed in the field of grating. In this paper, we first use metal single closed-loop to introduce the guided mode resonance in the field of supermaterials, and study the regulation of the structure parameters on the guided mode resonance. On the basis of this, two ways to obtain high Q are proposed, one is metal double closed loop and the other is metal double open ring. The basic structural elements are two metal close-loop uniformly distributed in the X-direction cycle of 2d. On Pi thin film with Y direction period d, the center distance between two adjacent metal rings is both d and the actual period is d, which is similar to a uniform two-dimensional grating. The grating diffraction effect is generated and the guided mode with a grating period of d is excited. When the two metal closed loops are shifted in opposite direction or in reverse direction (which are equivalent). The distance between the centers of the two metal rings adjacent to the metamaterials is not equal. The period of 2d grating is introduced and the guided mode of the period is excited. The component of guided mode energy (i.e. modulation depth) on the period of 2d grating can be adjusted by adjusting the translation. Through the simulation, the smaller the translation, the higher the Q value and the smaller the amplitude of the guided mode resonance peak. On the basis of this, the influence of waveguide thickness on the resonant peak of guided mode is discussed. It is found that the material of waveguide layer is better to select the thin one with small loss. Finally, the influence of the thickness of waveguide layer on the resonant peak of guided mode is discussed. The samples were fabricated by laser direct writing electroless copper plating and tested by THz-TDS. The experimental results are in good agreement with the simulation results.) the basic structural elements are two open metal rings uniformly distributed on Pi thin films with the X direction cycle of 2dU Y direction period of d. The opening positions of the two rings are distributed in the upper and lower parts of the ring respectively.; when the two metal rings are rotated at the center of each ring at the same time or the opening positions of the two metal rings are shifted in opposite direction or reverse. In this way, the grating period of 2d can be introduced and the guided mode of the period can be excited. Similar to the rule of the former method, the smaller the rotation angle or the translation, the higher the Q value and the smaller the amplitude of the resonant peak of the guided mode. The Q value above 104 is also obtained in the simulation. In addition, a method to adjust the width of the EIT resonant peak based on the interaction between the guide mode and the dipole resonant peak is proposed. The control effect is given in the simulation. Finally, the sample is processed by laser direct writing electroless copper plating method, and tested by THz-TDS. The experimental results are in good agreement with the simulation results.
【學(xué)位授予單位】:中國(guó)計(jì)量大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TB33
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 俞鶴慶,杜樹(shù)鏞;導(dǎo)模法生長(zhǎng)成型藍(lán)寶石的進(jìn)展與展望[J];人工晶體;1985年Z1期
2 ;導(dǎo)模粘結(jié)試驗(yàn)成功[J];科技簡(jiǎn)報(bào);1977年01期
3 王崇魯;;導(dǎo)模法生長(zhǎng)白寶石及其發(fā)展[J];硅酸鹽通報(bào);1985年04期
4 馬勝利,井曉天,孫巧艷;導(dǎo)模法生長(zhǎng)白寶石單晶中的缺陷觀察[J];無(wú)機(jī)材料學(xué)報(bào);1998年01期
5 王崇魯,張?zhí)K;導(dǎo)模法生長(zhǎng)的白寶石片狀晶體中氣孔的形成與消除[J];硅酸鹽通報(bào);1990年06期
6 董建峰;;手征光纖中的導(dǎo)模特性[J];光學(xué)儀器;1997年Z1期
7 彭娉;李冠強(qiáng);張鵬;劉建科;;雙層石墨烯非對(duì)稱(chēng)波導(dǎo)中導(dǎo)模的色散關(guān)系[J];陜西科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年06期
8 馬勝利,井曉天,孫巧艷;導(dǎo)模法生長(zhǎng)白寶石單晶中的氣孔觀察[J];人工晶體學(xué)報(bào);1998年01期
9 胡克艷;唐慧麗;王靜雅;錢(qián)小波;徐軍;楊秋紅;;導(dǎo)模法藍(lán)寶石單晶的位錯(cuò)缺陷及其力學(xué)性能的研究[J];人工晶體學(xué)報(bào);2013年07期
10 趙天恩;伍瑞新;楊帆;陳平;;周期性層狀鐵氧體-電介質(zhì)復(fù)合材料中導(dǎo)模模式的有效負(fù)折射率[J];物理學(xué)報(bào);2006年01期
相關(guān)會(huì)議論文 前2條
1 張大偉;王琦;陶春先;黃元申;倪爭(zhēng)技;莊松林;;導(dǎo)模共振特性的應(yīng)用研究[A];中國(guó)光學(xué)學(xué)會(huì)2011年學(xué)術(shù)大會(huì)摘要集[C];2011年
2 王賢平;孫晶晶;殷澄;曹莊琪;;電控光束移動(dòng)[A];全國(guó)第15次光纖通信暨第16屆集成光學(xué)學(xué)術(shù)會(huì)議論文集[C];2011年
相關(guān)博士學(xué)位論文 前2條
1 王琦;導(dǎo)模共振亞波長(zhǎng)器件的機(jī)理及特性研究[D];上海理工大學(xué);2012年
2 王賢平;雙面金屬包覆波導(dǎo)中的古斯—漢欣效應(yīng)及流體測(cè)量研究[D];上海交通大學(xué);2014年
相關(guān)碩士學(xué)位論文 前6條
1 陳航;基于導(dǎo)模諧振的超高Q太赫茲超材料研究[D];中國(guó)計(jì)量大學(xué);2016年
2 袁博;基于三維周期衍射結(jié)構(gòu)的非偏振導(dǎo)模共振濾波器的研究[D];北京交通大學(xué);2012年
3 劉文興;可控線(xiàn)寬導(dǎo)模共振濾波器設(shè)計(jì)及其特性研究[D];南昌大學(xué);2011年
4 趙昊;基于氮化鎵的導(dǎo)模共振濾波器分析研究[D];南京郵電大學(xué);2015年
5 周永川;6~18GHz邊導(dǎo)模寬帶小型化微帶隔離器[D];電子科技大學(xué);2007年
6 阮麟旭;負(fù)—零—正折射率材料在光學(xué)Dirac點(diǎn)附近的非線(xiàn)性表面波及波導(dǎo)導(dǎo)模特性的研究[D];上海大學(xué);2011年
,本文編號(hào):1472452
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1472452.html