常壓等離子體改性苧麻增強(qiáng)熱塑性樹脂基復(fù)合材料界面性能的研究
發(fā)布時(shí)間:2018-01-17 21:18
本文關(guān)鍵詞:常壓等離子體改性苧麻增強(qiáng)熱塑性樹脂基復(fù)合材料界面性能的研究 出處:《東華大學(xué)》2015年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 常壓等離子體 苧麻 界面性能 復(fù)合材料 處理參數(shù) 響應(yīng)面
【摘要】:天然植物纖維增強(qiáng)熱塑性樹脂基復(fù)合材料由于成本低、成型快、輕質(zhì)高強(qiáng)、抗沖擊、耐酸堿及可回收等優(yōu)點(diǎn)而備受關(guān)注。我國(guó)天然纖維尤其是麻類纖維資源豐富,其中苧麻產(chǎn)量世界第一,如能將其開發(fā)為高附加值的增強(qiáng)纖維很有意義。但是苧麻纖維親水性的表面與熱塑性樹脂基體疏水性的表面極性差別大,兩者之間相容性差使得其界面粘結(jié)性能差,負(fù)載不能有效地通過界面?zhèn)鬟f,造成復(fù)合材料整體性能下降。目前常使用的界面改性方法雖能取得一定效果,但是處理效率低、能源消耗高、對(duì)纖維損傷大,且廢棄物的處理污染環(huán)境,不符合當(dāng)今可持續(xù)發(fā)展的理念,因此對(duì)環(huán)境友好、可操作性強(qiáng)、處理效率高且對(duì)纖維損傷小的等離子體技術(shù)在材料表面改性領(lǐng)域研究中的關(guān)注度與日俱增。如能將等離子體技術(shù)運(yùn)用于植物纖維的表面改性,提高植物纖維增強(qiáng)復(fù)合材料的界面性能,極有發(fā)展前景。 但是,大部分等離子體處理都是在低氣壓的條件下進(jìn)行,而抽真空系統(tǒng)成本高,處理不連續(xù),加上抽真空處理對(duì)于一些含液體的樣品難以實(shí)施,使得等離子體技術(shù)的應(yīng)用受到了一定的限制。因而國(guó)際上正積極研究不需要真空系統(tǒng)的常壓等離子體技術(shù),目前主要有兩種:常壓等離子體射流(APPJ)和常壓介質(zhì)阻擋放電(DBD)等離子體。 本課題采用常壓APPJ和DBD設(shè)備,以苧麻纖維和苧麻織物為研究對(duì)象,系統(tǒng)地研究了常壓等離子體技術(shù)對(duì)苧麻纖維表面性能的影響;等離子體處理參數(shù)對(duì)改性效果的交互作用;等離子體對(duì)苧麻纖維改性的時(shí)效性;等離子體對(duì)苧麻織物的改性以及對(duì)苧麻織物增強(qiáng)聚丙烯復(fù)合材料界面性能及力學(xué)性能的影響。圍繞該主題,本文開展的主要工作如下: (1)采用常壓DBD等離子體對(duì)苧麻纖維表面進(jìn)行改性,選用聚丁二酸丁二醇酯(PBS)為熱塑性樹脂基體。分別采用掃描電鏡(SEM)、原子力顯微鏡(AFM)、 X射線光電子能譜(XPS)、纖維動(dòng)態(tài)接觸角分析(DCAA)以及單纖維拉伸強(qiáng)度測(cè)試等考察了等離子體處理對(duì)苧麻纖維表面形貌、表面化學(xué)成分、表面親水性能的改變以及對(duì)苧麻纖維強(qiáng)度的影響,采用單纖維抽拔測(cè)試來檢測(cè)苧麻纖維與PBS樹脂的界面剪切強(qiáng)度(IFSS)。研究結(jié)果表明:經(jīng)等離子體處理后,苧麻纖維表面變得粗糙并出現(xiàn)了許多明顯的顆粒、微坑和凸起,增加了纖維表面與PBS的機(jī)械鎖合作用。纖維表面碳元素含量以及C-C基團(tuán)含量明顯提高,纖維接觸角也明顯提高,苧麻與PBS樹脂間的IFSS值增幅最高約46%,苧麻纖維的拉伸強(qiáng)度沒有出現(xiàn)顯著性減小。同時(shí)發(fā)現(xiàn)等離子體處理電壓對(duì)苧麻纖維的表面改性有顯著性影響:當(dāng)處理電壓低于一定閾值時(shí),等離子體對(duì)苧麻纖維幾乎起不到改性效果;而處理電壓過高時(shí),則會(huì)破壞改性效果,因此應(yīng)合理選擇等離子體處理參數(shù)。 (2)常壓等離子體處理參數(shù)對(duì)材料表面改性效果通常有顯著性影響,而等離子體各處理參數(shù)對(duì)改性效果的影響不是獨(dú)立的,參數(shù)間往往有交互作用。為了研究常壓等離子體處理參數(shù)對(duì)苧麻纖維表面改性效果的綜合影響,設(shè)計(jì)改進(jìn)了一種新型的常壓DBD等離子體設(shè)備對(duì)苧麻纖維表面進(jìn)行改性,使用中心復(fù)合設(shè)計(jì)(CCD)響應(yīng)面法(RSM)對(duì)等離子體處理參數(shù)進(jìn)行設(shè)計(jì),在單因素實(shí)驗(yàn)研究基礎(chǔ)上,選定3個(gè)影響較大的因素(處理電流、處理時(shí)間、乙醇?xì)怏w流速)作3因素5水平實(shí)驗(yàn)來考察處理參數(shù)對(duì)等離子體改性苧麻纖維的協(xié)同作用,共有15組實(shí)驗(yàn)處理參數(shù)。分別采用場(chǎng)發(fā)射掃描電鏡(FESEM)、 XPS、 DCAA考察了苧麻纖維表面形貌、表面化學(xué)成分及表面親水性能的變化;由單纖維抽拔測(cè)試獲得苧麻纖維與聚丙烯樹脂基體間的IFSS值;由四極桿質(zhì)譜分析儀來測(cè)試等離子反應(yīng)室內(nèi)的氣體成分。研究表明:等離子體處理參數(shù)間存在交互作用,在處理電流(10mA),處理時(shí)間(5min)及乙醇流速(8sccm)的等離子體處理參數(shù)下,苧麻與聚丙烯間的IFSS增幅值為最高約為50%,而且流速是對(duì)改性效果影響最顯著的因素。由質(zhì)譜分析發(fā)現(xiàn),乙基基團(tuán)濃度較高的組,其相應(yīng)的DCAA值和IFSS值也大多比較高,說明乙基的濃度與等離子體對(duì)苧麻纖維的改性效果緊密相關(guān)。此外,本實(shí)驗(yàn)中在原有的氣體通道外另增加了一個(gè)通道,這種對(duì)傳統(tǒng)等離子體設(shè)備的改良方法可以控制和按需調(diào)節(jié)處理氣體成分比,對(duì)提高等離子體處理效果的重復(fù)性和穩(wěn)定性很有幫助。 (3)常壓等離子對(duì)材料表面改性的主要問題是等離子體的時(shí)效性,即改性后的材料表面狀態(tài)會(huì)慢慢回復(fù)到未改性水平。由于改性后的材料在等待應(yīng)用過程中還可能會(huì)經(jīng)過相當(dāng)長(zhǎng)的一段時(shí)間,因此時(shí)效性研究成為了等離子體對(duì)材料表面改性研究領(lǐng)域必不可少的內(nèi)容。為了進(jìn)一步研究常壓等離子體對(duì)苧麻纖維的表面改性效果是否存在時(shí)效性,使用常壓等離子體射流(APPJ)設(shè)備對(duì)苧麻纖維表面進(jìn)行處理,并在150天內(nèi)每隔一定時(shí)間分別對(duì)纖維進(jìn)行測(cè)定,采用SEM、XPS、纖維接觸角測(cè)試等分析技術(shù)考察苧麻纖維的表面形貌、表面化學(xué)成分及表面親水性能的變化;采用單纖維抽拔測(cè)試對(duì)苧麻纖維及聚丙烯樹脂間的IFSS值進(jìn)行測(cè)定;并采用SEM對(duì)單纖維抽拔測(cè)試后的苧麻纖維表面脫粘區(qū)域形貌進(jìn)行分析。研究表明:在150天內(nèi),苧麻纖維表面化學(xué)成分中碳氧元素及各基團(tuán)的含量較為穩(wěn)定,而表面親水性、苧麻/聚丙烯的IFSS值以及苧麻纖維脫粘形貌未見明顯變化,即常壓等離子體處理將親水性的苧麻表面改性為疏水性后,其表面未見明顯的親水性回復(fù),因此常壓等離子體處理可被用作一種改性效果較為穩(wěn)定和持久的材料表面改性方法。 (4)使用常壓DBD等離子體對(duì)苧麻織物表面進(jìn)行改性,使用熱壓法制備苧麻織物增強(qiáng)聚丙烯復(fù)合材料板,以研究常壓等離子體改性前后苧麻織物表面性能以及其增強(qiáng)聚丙烯復(fù)合材料界面性能和力學(xué)性能的改善。采用SEM、XPS、表面接觸角測(cè)試來分別考察苧麻織物的表面形貌、化學(xué)成分及表面親水性能的變化;并采用SEM來觀察經(jīng)層間剪切強(qiáng)度(ILSS)測(cè)試后的織物表面脫粘區(qū)域形貌;采用ILSS測(cè)試、彎曲強(qiáng)度測(cè)試和拉伸強(qiáng)度測(cè)試來分別檢測(cè)等離子體改性前后的復(fù)合材料剪切性能、彎曲性能和拉伸性能。通過SEM分析發(fā)現(xiàn),經(jīng)常壓等離子體改性后,苧麻纖維表面粗糙度增加,改性后的苧麻織物增強(qiáng)聚丙烯復(fù)合材料的界面剪切破壞模式由粘合破壞轉(zhuǎn)變?yōu)榱藘?nèi)聚破壞,剪切破壞區(qū)域纖維表面粘附了大量聚丙烯樹脂,纖維與樹脂基體間的結(jié)合性能改善,是較為理想的界面破壞模式。通過XPS和接觸角測(cè)試表明,常壓等離子體處理后苧麻織物表面的碳元素比例大幅度上升,氧碳元素比例降低,苧麻織物表面接觸角明顯增加,表明等離子體處理在苧麻織物表面引入了疏水性基團(tuán)。復(fù)合材料的力學(xué)性能測(cè)試表明,改性后苧麻織物增強(qiáng)復(fù)合材料的層間剪切強(qiáng)度、彎曲強(qiáng)度和拉伸強(qiáng)度都有顯著提高,提高幅度最高分別為39%,28%和20%。
[Abstract]:The natural plant fiber reinforced thermoplastic resin based composite materials because of low cost, fast molding, light weight and high strength, impact resistance, acid and alkali and Recyclable has attracted attention. The natural fiber in China especially the bast fiber is rich in resources, the ramie production in the world, such as the development of high value-added fiber is of great significance. But the surface hydrophilicity of ramie fiber and thermal plastic surface of the resin matrix of hydrophobic polar difference, between the poor compatibility of the poor interface bonding performance, load can be transferred effectively through the interface, resulting in a decline in the overall performance of the composite material. The modification methods often used at present although the interface can be achieved a certain effect, but low efficiency, high energy consumption, damage to fiber, and the disposal of waste pollution of the environment, do not accord with the concept of sustainable development, so the environmental friendly, strong operability, Processing efficiency is high and the degree of concern grow with each passing day of fiber damage on plasma technology in the field of surface modification as can use surface plasma technology in plant fiber modification, to improve the interface properties of composite materials of plant fiber, it has great development prospects.
However, most of the plasma processing is carried out in low pressure conditions, and vacuum system of high cost, processing is not continuous, and vacuum treatment for some liquid samples is difficult to implement, the application of plasma technology is limited. The international community is actively studying the atmospheric plasma technology without vacuum system at present, there are two main types: atmospheric pressure plasma jet (APPJ) and atmospheric dielectric barrier discharge (DBD) plasma.
The atmospheric pressure APPJ and DBD equipment to ramie fiber and ramie fabric as the research object, systematically studied the influence of atmospheric pressure plasma technology on the surface properties of ramie fiber; plasma treatment parameters on the interaction effect of modification; plasma modification of effectiveness of ramie fiber; plasma on ramie fabric modification and the ramie fabric reinforced polypropylene composite interfacial properties and mechanical properties. On the subject, the main work carried out as follows:
(1) the modification of ramie fiber surface atmospheric DBD plasma, using poly butylene succinate (PBS) is a thermoplastic resin matrix, respectively. Using scanning electron microscopy (SEM), atomic force microscopy (AFM), X ray photoelectron spectroscopy (XPS) analysis, fiber (DCAA) and dynamic contact angle the single fiber tensile strength test and other effects of the plasma treatment on the surface morphology of ramie fiber, surface chemical composition, surface hydrophilicity and change of ramie fiber strength, single fiber pull-out test to detect the interfacial shear strength of ramie fiber and PBS resin (IFSS). The results showed that after plasma treatment, ramie the fiber surface becomes rough and there are many obvious particles, micro holes and bumps, increase the fiber surface and the PBS mechanical locking effect. The surface content of carbon fiber and the content of C-C groups increased significantly, the fiber The antennae were significantly increased, ramie and PBS resin IFSS values between the highest growth rate of about 46%, the tensile strength of ramie fibers did not appear significantly reduced. At the same time that the plasma treatment voltage on the surface of ramie fiber modification had a significant effect: when the applied voltage is lower than a certain threshold, plasma almost of ramie fiber not modified the effect of processing; and the voltage is too high, it will destroy the modification effect, it should be a reasonable choice of plasma treatment parameters.
(2) atmospheric plasma treatment parameters often have a significant impact on the material surface modification effect, and the effect of processing parameters on the plasma modification effect is not independent, often have interaction parameters. In order to study the atmospheric plasma treatment parameters on the comprehensive effect of ramie fiber surface modification effect, improved design modification on the surface of the ramie fiber is a new type of atmospheric DBD plasma devices, using central composite design (CCD) response surface method (RSM) to design the plasma processing parameters, based on single factor experiment, selected 3 influence factors (current treatment, treatment time, gas flow rate of 3 ethanol) 5 factors to investigate the synergistic effect level of experimental treatment parameters on plasma modification of ramie fiber, a total of 15 experiments. The processing parameters respectively by field emission scanning electron microscopy (FESEM), XPS, DCAA were investigated The surface morphology of ramie fiber, changes in surface chemical composition and surface hydrophilicity; pull test pumping by the single fiber matrix of ramie fiber and polypropylene resin between the IFSS value; by quadrupole mass analyzer to test gas plasma reaction chamber component. The study shows that the plasma processing parameters interaction, in dealing with the current (10mA), treatment time (5min) and ethanol (8sccm) velocity of plasma treatment parameters, ramie and polypropylene between IFSS growth is the highest value is about 50%, and the flow rate is the most significant factor modification effect. By mass spectrometry analysis showed that the ethyl radical concentration group, the corresponding DCAA and IFSS values are relatively high, indicating modification effect and plasma concentration of ethyl of ramie fiber is closely related. In addition, this experiment in the gas channel outside the original added a channel, The improved method of traditional plasma equipment can control and adjust gas composition ratio on demand, which is very helpful for improving repeatability and stability of plasma treatment effect.
(3) plasma is the time of the main problem of plasma surface modification of materials, the material surface modification state after getting back to the unmodified level. Due to the modified material in the process of waiting for the application may also after quite a long period of time, so the study of timeliness become plasma surface modification of materials research in the field of essential content. In order to further study the existence of the timeliness of the atmospheric pressure plasma of ramie fiber surface modification effect, the use of atmospheric pressure plasma jet (APPJ) equipment of ramie fiber surface treatment, and in every 150 days within a certain time of fiber were measured by SEM, XPS fiber contact angle testing, analysis of technical investigation of ramie fiber surface morphology, changes in surface chemical composition and surface hydrophilicity; single fiber pull-out test of ramie fiber IFSS and polypropylene resin between the value determination; and adopting SEM debonding area of ramie fiber surface morphology of single fiber pull-out test after analysis. The study shows that in 150 days, the content of oxygen and carbon fiber surface chemical composition elements of ramie and each groups is relatively stable, while the surface hydrophilicity, ramie / polypropylene IFSS value and ramie fiber debonding morphology did not change obviously, the atmospheric pressure plasma treatment of ramie surface hydrophilic modification of hydrophobic and hydrophilic surface no reply the obvious, so the atmospheric pressure plasma treatment can be used as a surface modification effect is stable and lasting modification method.
(4) the use of atmospheric DBD plasma on ramie fabric surface modification, preparation of ramie fabric reinforced polypropylene composite plate using hot pressing method, to study the atmospheric pressure plasma treatment of ramie fabric surface properties and improve its reinforced polypropylene composite interfacial properties and mechanical properties. By using SEM, XPS, surface contact angle test respectively to analyze the surface morphology of ramie fabric, changes in chemical composition and surface hydrophilicity; and to observe the interlaminar shear strength by SEM (ILSS) testing fabric surface after debonding area morphology; using ILSS test, flexural strength test and tensile strength test to detect the shear properties of the composites before and after plasma treatment the respectively, flexural strength and tensile strength. The SEM analysis showed that often pressure after plasma modification of ramie fiber, the surface roughness increases, the modified ramie fabric reinforced The interfacial shear failure mode of polypropylene composites by adhesion damage to cohesive failure, shear failure area of fiber surface adhesion of polypropylene resin combination between the fiber and the matrix performance, is the ideal interface failure mode. Through XPS and contact angle test showed that the carbon ratio greatly after atmospheric pressure plasma treatment of ramie fabrics the surface of the rising oxygen carbon ratio decreased, the ramie fabric surface contact angle increased significantly, that in plasma processing of ramie fabric was introduced to the surface of hydrophobic groups. The mechanical properties of composite materials showed that the modified ramie fabric reinforced composite interlaminar shear strength, bending strength and tensile strength are increased significantly and the highest increase rate were 39%, 28% and 20%.
【學(xué)位授予單位】:東華大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:TB332
【參考文獻(xiàn)】
相關(guān)期刊論文 前1條
1 王春霞;邱夷平;;常壓等離子射流處理對(duì)羊毛織物正反面染色性的影響[J];紡織學(xué)報(bào);2007年11期
相關(guān)博士學(xué)位論文 前2條
1 孫潔;常壓等離子體處理高分子材料誘導(dǎo)自由基及其引發(fā)表面改性反應(yīng)的研究[D];東華大學(xué);2011年
2 賈彩霞;空氣DBD等離子體對(duì)芳綸表面及其增強(qiáng)復(fù)合材料界面的改性研究[D];大連理工大學(xué);2012年
,本文編號(hào):1438018
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1438018.html
最近更新
教材專著