硅納米晶體表面改性和發(fā)光性能研究
本文關(guān)鍵詞:硅納米晶體表面改性和發(fā)光性能研究 出處:《浙江大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 硅納米晶體 表面改性 光致發(fā)光 熒光量子效率 輻射復(fù)合幾率 非輻射復(fù)合幾率 懸掛鍵
【摘要】:硅納米晶體由于具有新穎的電學(xué)和光學(xué)性能,在光電子、光伏、顯示和生物標(biāo)記等領(lǐng)域擁有廣闊的用途前景。本論文的工作,集中在研究硅納米晶體的發(fā)光性能與其尺寸和表面改性的關(guān)系。我們采用冷等離子體硅納米晶體合成設(shè)備獲得獨(dú)立存在的,尺寸分布在2-10 nm的硅納米晶體顆粒。然后,對其進(jìn)行氫化硅烷化表面改性,尺寸分選等操作,獲得尺寸分布集中的一系列顆粒。測試這一系列顆粒的熒光光譜,熒光效率,熒光壽命并以此計(jì)算其輻射,非輻射復(fù)合幾率。我們發(fā)現(xiàn)熒光峰位能量與尺寸之間符合有效質(zhì)量近似模型。熒光效率隨著尺寸的減小(從10 nm減小到2 nm)呈先升高后下降的趨勢,最佳熒光效率出現(xiàn)在尺寸2.8nm時(shí),對應(yīng)的熒光峰位是744 nm。隨著尺寸從10 nm減小到2 nm,我們發(fā)現(xiàn)硅納米晶體的非輻射復(fù)合幾率呈指數(shù)型上升,通過電子順磁能譜(EPR)測試,我們證明這與納米晶表面懸掛鍵密度的變化有關(guān)。當(dāng)尺寸從10 nm減小到2.8 nm,硅納米晶體的輻射復(fù)合幾率也呈現(xiàn)指數(shù)型上升,這符合量子限域效應(yīng)理論。然而,當(dāng)尺寸進(jìn)一步從2.8 nm減小到2 nm時(shí),輻射復(fù)合幾率不再呈現(xiàn)指數(shù)型上升,而是略有下降。我們認(rèn)為,當(dāng)納米晶體尺寸很小時(shí),電子和空穴容易從納米晶體內(nèi)部隧穿到其表面,這可能是造成輻射復(fù)合幾率不再呈現(xiàn)指數(shù)型上升的原因。我們比較了加熱法和紫外(UV)輻照法對硅納米晶體氫化硅烷化反應(yīng)的影響,選用1-十八烯,1-十二烯,1-辛烯,1-戊烯和苯乙烯進(jìn)行氫化硅烷化反應(yīng)。獲得了不同改性條件下的烷基鈍化的硅納米晶體。對其進(jìn)行尺寸,熒光光譜,熒光效率,熒光壽命等測試,并計(jì)算其輻射,非輻射復(fù)合幾率。我們發(fā)現(xiàn),UV輻照法有利于降低氫化硅烷化反應(yīng)過程中基團(tuán)的交聯(lián)反應(yīng)。對于1-十八烯,1-十二烯,1-辛烯,采用UV輻照法和加熱法獲得的硅納米晶體具有相似的發(fā)光性能;而對于1-戊烯和苯乙烯,相對于加熱法,采用UV輻照法更有利于提高硅納米晶體的熒光效率。我們對氫化硅烷化的硅納米晶體進(jìn)行了電子順磁能譜測試,發(fā)現(xiàn)較高的熒光效率對應(yīng)于較低的表面懸掛鍵密度。
[Abstract]:Because of its novel electrical and optical properties, silicon nanocrystals have broad application prospects in photoelectron, photovoltaic, display and biomarker fields. Focusing on the study of the relationship between the luminescence properties of silicon nanocrystalline and its size and surface modification, we use the cold plasma silicon nanocrystalline synthesis equipment to obtain independent existence. The size distribution of silicon nanocrystalline particles is 2-10 nm. Then, the hydrosilanized surface modification, size sorting and other operations are carried out. The fluorescence spectra, fluorescence efficiency, fluorescence lifetime of these particles were measured and their radiation was calculated. Non-radiative recombination probability. We found that the fluorescence peak energy and size fit the effective mass approximation model. The fluorescence efficiency decreases with the size (from 10 nm to 2 nm). It showed a tendency of rising first and then decreasing. The optimum fluorescence efficiency is at the size of 2.8 nm, and the corresponding fluorescence peak is 744 nm, which decreases from 10 nm to 2 nm. We found that the non-radiative recombination probability of silicon nanocrystalline increased exponentially, and was measured by electron paramagnetic energy spectroscopy (EPR). It is shown that this is related to the change of the hanging bond density of nanocrystalline surface. When the size is reduced from 10 nm to 2.8 nm, the radiation recombination probability of silicon nanocrystals also increases exponentially. However, when the size is further reduced from 2.8 nm to 2 nm, the radiation recombination probability does not increase exponentially, but decreases slightly. When the size of nanocrystalline is very small, electrons and holes are easily tunneled from the inside of nanocrystalline to its surface. This may be the reason that the probability of radiation recombination no longer increases exponentially. We compared the effects of heating and UV irradiation on the hydrogenation of silicon nanocrystalline with 1-18 enene. 1-12 alkyl passivated silicon nanocrystals were obtained by hydrogenation of 1-12-octene-1-pentene with styrene. The size, fluorescence spectrum and fluorescence efficiency of these crystals were determined. The fluorescence lifetime was measured and the recombination probability of radiation and non-radiation was calculated. We found that UV irradiation was beneficial to reduce the cross-linking reaction of groups in the process of hydrosilanization. The Si nanocrystals obtained by UV irradiation and heating have similar luminescence properties. For 1-pentene and styrene, UV irradiation is better than heating method to improve the fluorescence efficiency of silicon nanocrystalline. We have measured the electron paramagnetic energy spectrum of hydrogenated silanized silicon nanocrystals. It is found that the higher fluorescence efficiency corresponds to the lower surface hanging bond density.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TB383.1;O613.72
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 曹淑芬;可制成納米晶體的有效溶劑[J];世界科學(xué);2002年08期
2 徐慧,李新梅,鐘桂雄;納米晶體熱學(xué)性質(zhì)的理論研究[J];電子元件與材料;2002年10期
3 賀家寧,王國光,李躍;納米晶體熱容提高原因的研究[J];試驗(yàn)技術(shù)與試驗(yàn)機(jī);2004年Z2期
4 謝丹,汪明樸,齊衛(wèi)宏,曹玲飛;金屬納米晶體熔化與過熱的等效模型[J];金屬學(xué)報(bào);2005年05期
5 羅江山;劉偉;唐永建;雷海樂;吳衛(wèi)東;;納米晶體銅的制備及其結(jié)構(gòu)表征[J];金屬功能材料;2006年01期
6 俞建長;胡勝偉;;高分散氧化鋯納米晶體的合成與表征[J];硅酸鹽學(xué)報(bào);2006年02期
7 薛寧;鄒永金;樊先平;;稀土摻雜復(fù)式鎢酸鹽納米晶體的制備及發(fā)光性能[J];材料科學(xué)與工程學(xué)報(bào);2007年02期
8 周劍秋;朱榮濤;李元玲;賀小華;李政輝;;含孔隙多相納米晶體陶瓷的力學(xué)性能計(jì)算模型[J];稀有金屬材料與工程;2007年S2期
9 甄春花;;金屬納米晶體的珍寶——二十四面體鉑納米晶體催化劑[J];實(shí)驗(yàn)室研究與探索;2008年05期
10 ;美開發(fā)出耐高溫超強(qiáng)超硬納米晶體鐵鋯合金 鋯的摻入使合金的納米晶體結(jié)構(gòu)在高溫下得以保持[J];光學(xué)儀器;2008年03期
相關(guān)會議論文 前10條
1 王引書;孫平;王若楨;;非共振區(qū)納米晶體的電光性能[A];第一屆全國納米技術(shù)與應(yīng)用學(xué)術(shù)會議論文集[C];2000年
2 呂凈宇;張秀娟;孫旭輝;;用同步輻射表征技術(shù)對有機(jī)納米晶體結(jié)構(gòu)和發(fā)光關(guān)系的研究[A];中國化學(xué)會第27屆學(xué)術(shù)年會第04分會場摘要集[C];2010年
3 熊瑞瑞;何彥;;水溶性核摻雜納米晶體發(fā)光特性的研究及其在生物標(biāo)記中的應(yīng)用[A];中國化學(xué)會第26屆學(xué)術(shù)年會納米化學(xué)分會場論文集[C];2008年
4 雷瑜;何恩節(jié);張喜生;田宇;鄭海榮;;基質(zhì)變化對于稀土摻雜氟化物納米晶體熒光發(fā)射性質(zhì)的影響[A];第十五屆全國光散射學(xué)術(shù)會議論文摘要集[C];2009年
5 郭佳;翁志煥;張鵬;汪長春;;納米多孔共軛聚合物膠體的合成及其,
本文編號:1435627
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1435627.html