Cu、Ti納米薄膜原位納米壓痕力學(xué)性能表征
本文關(guān)鍵詞:Cu、Ti納米薄膜原位納米壓痕力學(xué)性能表征 出處:《太原理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 原位納米壓痕 納米薄膜 銅薄膜 鈦薄膜 彈性模量 力學(xué)性能
【摘要】:21世紀(jì)以來(lái),隨著能源、信息、環(huán)境、生物技術(shù)以及國(guó)防工業(yè)的迅猛發(fā)展,對(duì)納米薄膜科學(xué)領(lǐng)域的研究也不斷深入。在微機(jī)電系統(tǒng)(MEMS)中銅薄膜由于其較低的電阻率和較高的熔點(diǎn),代替了以前互連線中的鋁薄膜。鈦薄膜以其良好的附著力、生物相容性而廣泛應(yīng)于太陽(yáng)能電池、傳感器、分解水制氫、貯氫材料以及生物科學(xué)等領(lǐng)域。然而近幾年,元器件的小型化、智能化、高集成、高密度存儲(chǔ)和超快傳輸?shù)纫蠹{米薄膜材料的尺寸越來(lái)越小,要求納米薄膜材料的性能越來(lái)越高。隨著納米科學(xué)領(lǐng)域研究的不斷深入,對(duì)納米薄膜材料的探索也逐步由觀測(cè)樣品表面形貌延伸到了力學(xué)性能等特征參數(shù)的獲取領(lǐng)域。由于力學(xué)性能是納米薄膜材料的重要基本性能參數(shù),人們非常迫切的需要了解納米薄膜材料在微觀條件下和宏觀力學(xué)性能之間的聯(lián)系和區(qū)別,并希望得到相應(yīng)的理論數(shù)據(jù)來(lái)指導(dǎo)新結(jié)構(gòu)的設(shè)計(jì)。但是針對(duì)納米薄膜力學(xué)表征的研究卻很少見(jiàn),隨著納米薄膜技術(shù)的不斷發(fā)展,納米薄膜力學(xué)勢(shì)必將成為力學(xué)研究領(lǐng)域中不可或缺的重要組成部分,也是將來(lái)我們要深入研究的重要領(lǐng)域,其結(jié)果對(duì)納米薄膜材料的使用起著非常重大的指導(dǎo)性意義。載荷壓入曲線好比材料的指紋,由此可以得到相應(yīng)納米薄膜材料的力學(xué)性能指標(biāo)。在本文中主要對(duì)銅納米薄膜和鈦納米薄膜的力學(xué)特性參數(shù)通過(guò)納米壓痕法進(jìn)行測(cè)試,以彈性模量為主要研究對(duì)象,采用自主研發(fā)的掃描電子顯微鏡/掃描探針顯微鏡(SEM/SPM)聯(lián)合測(cè)試系統(tǒng)以及布魯克原子力顯微鏡(AFM),通過(guò)納米壓痕的試驗(yàn)方法,得到被測(cè)試樣品的力位移曲線,并通過(guò)赫茲理論計(jì)算得到其彈性模量。研究的主要內(nèi)容及成果如下:1.利用自主研發(fā)的掃描電子顯微鏡-掃描探針顯微鏡聯(lián)合測(cè)試系統(tǒng),研究了直流磁控濺射(DCMS)和原子層沉積(ALD)兩種成膜方式對(duì)40,60,80納米銅薄膜彈性模量的影響;诤掌澙碚摵蚄ing模型的計(jì)算結(jié)果表明,利用DCMS得到不同厚度銅薄膜的彈性模量值在95±2GPa到125±4GPa之間,而通過(guò)ALD得到的銅薄膜彈性模量值在99±2GPa到154±6GPa之間。對(duì)比分析可知,不同厚度的銅薄膜彈性模量比塊體銅材料的彈性模量(90GPa)大6%-71%,且通過(guò)兩種不同方式沉積得到的銅薄膜彈性模量值都隨著薄膜厚度的增加而減小,表現(xiàn)出明顯的尺寸效應(yīng)。而且對(duì)于同一厚度的銅薄膜,利用ALD沉積的彈性模量比DCMS的大4.2%-23.2%,由透射電子顯微圖像對(duì)比分析可知,前者的平均晶粒尺寸是后者的60%,納米晶粒小尺寸效應(yīng)可能是薄膜彈性模量增大的原因。2.采用DCMS在(100)方向的硅片上沉積厚度為60nm、90nm、120nm以及180nm的鈦薄膜作為實(shí)驗(yàn)的研究對(duì)象,并以布魯克AFM為測(cè)試工具,納米壓痕為實(shí)驗(yàn)方法,復(fù)合彈性模量為指導(dǎo),分別進(jìn)行實(shí)驗(yàn)并求出不同厚度的鈦納米薄膜的彈性模量值。實(shí)驗(yàn)結(jié)果表明:厚度為60-180nm的鈦薄膜彈性模量在95-132GPa之間。對(duì)于同一厚度的鈦薄膜,彈性模量均隨著峰值力的增加而減小,即隨著壓入深度的增加而減小;其中在不同峰值力的測(cè)試條件下,厚度為120nm鈦薄膜測(cè)得的彈性模量相差最大(12.0%),厚度為60nm的相差最小(3.9%)。而且不同厚度的鈦薄膜,在峰值力同為100nN的情況下,隨著薄膜厚度的增加,其彈性模量逐漸減小;峰值力為150nN時(shí)同樣如此。同時(shí)采用SEM/SPM聯(lián)合測(cè)試系統(tǒng)對(duì)鈦納米薄膜進(jìn)行壓痕實(shí)驗(yàn),得到的樣品的彈性模量同樣隨著薄膜厚度的增大而減小。
[Abstract]:Since twenty-first Century, with the energy, information, environment, the rapid development of biological technology and defense industry, research on the scientific field of nano film deeply. In microelectromechanical systems (MEMS) in copper films due to its low resistivity and high melting point, instead of the previous interconnection in aluminum thin film titanium film to. The good adhesion, biocompatibility and widely applied in solar cell, sensor, the decomposition of water to hydrogen, hydrogen storage materials and biological sciences. However, in recent years, the miniaturization, intelligent components, high integration, high density storage and super fast transmission required size of nano film materials more and more small, requirements the performance is more and more high. The nano film materials with nano science research fields deepening exploration of nano film materials gradually from the observation sample surface extends to the mechanical properties and other characteristic parameters by Take the field. The mechanical performance is an important basic performance parameters of nano film materials, the relationship and difference between people is very urgent need to understand the nano film materials between under microscopic and macroscopic mechanical properties, and hope to get the corresponding theoretical data to guide the design of the new structure. But the study on nano mechanical characterization of thin films is very rare with the continuous development of technology, nano film, mechanical nano film is bound to become an important part in the field of mechanics, we are also important areas of research in the future, it plays a very important guiding significance for the use of nano film materials. The load curve of materials like fingerprints, which can be obtained the mechanical performance of the nano film materials. In this paper the copper nano thin film and nano titanium film mechanical properties parameters Tested by nanoindentation, the elastic modulus is the main research object, scanning electron microscopy / using self-developed scanning probe microscope (SEM/SPM) combined with Brook test system and atomic force microscopy (AFM), through the test of nano indentation method, get the force displacement curve of the sample is tested, and the elastic modulus obtained by Hertz theoretical calculation. The main research contents and achievements are as follows: 1. by using the scanning electron microscope and scanning probe microscope combined test system of DC magnetron sputtering (DCMS) and atomic layer deposition (ALD) effect of two kinds of film of 40,60,80 nano copper film elastic modulus calculation. Hertz theory and King model based on the results of the use of DCMS, the elastic modulus of different thickness of copper film in 95 + 2GPa to 125 + 4GPa, and the copper film elastic modulus obtained by ALD value In 99 + 2GPa to 154 + 6GPa. Comparing the different thickness of the copper film elastic modulus ratio of elastic modulus and bulk copper material (90GPa) 6%-71%, and the elastic modulus of copper thin film deposition in two different ways to get the value decreases with the increase of film thickness, showing obvious size effect. And for the same thickness of the copper film, the elastic modulus of ALD deposition is larger than that of DCMS 4.2%-23.2%, from the analysis of transmission electron microscopic image contrast, the average grain size of the former is 60% of the latter, nano crystal small size effect may be the reason for the increasing of.2. thin film elastic modulus used in DCMS (100) deposition the thickness of silicon wafer is 60NM, 90nm, 120nm and 180nm titanium film as the research object of this study, and to Brook AFM for testing tools, nano indentation method, composite elastic modulus as the guide, the experiment is carried out And calculated the elastic modulus of the nano titanium thin films with different thickness values. The experimental results show that the thickness of titanium film elastic modulus of 60-180nm in 95-132GPa. For titanium thin films with the same thickness, elastic modulus increased with the peak stress decreases, which decreases with increasing indentation depth; the peak force in different the test conditions, the thickness of 120nm titanium film measured elastic modulus was maximum (12%), the minimum thickness difference of 60NM (3.9%). And the different thickness of the titanium film, in the same peak force is 100nN, with the increase of film thickness, the elastic modulus decreases gradually; the peak force is 150nN when the same. At the same time by indentation experiments of titanium films were combined with SEM/SPM test system, the elastic modulus of the sample obtained by the same decrease with the increase of film thickness.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TB302.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王海斗;董美伶;崔秀芳;邢志國(guó);朱麗娜;劉金娜;;不同厚度納米Ti薄膜的力學(xué)性能[J];材料工程;2015年11期
2 杜圓明;張躍飛;張長(zhǎng)輝;劉燕萍;;基于原子力顯微鏡的薄膜原位壓痕力學(xué)性能研究[J];稀有金屬材料與工程;2015年08期
3 劉潁龍;劉芳;吳倩;陳愛(ài)英;李翔;潘登;;偏壓對(duì)鈦薄膜顯微組織及力學(xué)性能的影響(英文)[J];Transactions of Nonferrous Metals Society of China;2014年09期
4 夏木建;丁紅燕;周廣宏;章躍;;Ti層對(duì)316L不銹鋼表面TiB_2薄膜結(jié)合力的影響(英文)[J];Transactions of Nonferrous Metals Society of China;2013年10期
5 王鴻;王金淑;李春;李洪義;;磁控濺射參數(shù)對(duì)鈦薄膜結(jié)構(gòu)及陽(yáng)極氧化的影響[J];北京工業(yè)大學(xué)學(xué)報(bào);2013年02期
6 張敏捷;潘勇;周兆鋒;李瑋;惠建科;雷維新;;熱處理溫度對(duì)鍍鎳鈷鋼帶拉伸變形行為的影響(英文)[J];Transactions of Nonferrous Metals Society of China;2012年07期
7 張慧婷;周超;羅麗萍;李遂焰;陳俊英;孫鴻;黃楠;;利用MicroBCA和QCM對(duì)鈦薄膜表面固定纖連蛋白的量化研究與對(duì)比[J];功能材料;2012年13期
8 馬紅偉;劉實(shí);熊良銀;;合金化對(duì)濺射Ti膜材結(jié)構(gòu)和力學(xué)性能的影響[J];原子能科學(xué)技術(shù);2012年06期
9 楊班權(quán);陳光南;張坤;羅耕星;肖京華;;涂層/基體材料界面結(jié)合強(qiáng)度測(cè)量方法的現(xiàn)狀與展望[J];力學(xué)進(jìn)展;2007年01期
10 于翔;王成彪;劉陽(yáng);于德洋;;中頻對(duì)靶磁控濺射合成TiN/Ti多層膜[J];金屬學(xué)報(bào);2006年06期
,本文編號(hào):1401825
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1401825.html