天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 材料論文 >

電子封裝用低膨脹、高導(dǎo)熱銅基復(fù)合材料的制備及其性能研究

發(fā)布時間:2018-01-09 15:00

  本文關(guān)鍵詞:電子封裝用低膨脹、高導(dǎo)熱銅基復(fù)合材料的制備及其性能研究 出處:《江蘇大學(xué)》2017年碩士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: Cu/Sc_2W_3O_(12) Cu/SiC/Sc_2W_3O_(12) 低熱膨脹 高導(dǎo)熱


【摘要】:隨著電子元器件朝著更小、更輕和更快的趨勢發(fā)展,其集成化程度也急劇升高,伴隨而來的是芯片發(fā)熱量大幅增加,以及材料的受熱變形,傳統(tǒng)的Al和Cu等封裝材料已無法滿足其熱性能要求,因此開發(fā)低膨脹、高導(dǎo)熱封裝材料成了一個必然趨勢。本文以Cu為基體材料,以負熱膨脹材料Sc_2W_3O_(12)和低熱膨脹材料SiC為增強相,采用粉末冶金法制備了Cu/Sc_2W_3O_(12)和Cu/SiC/Sc_2W_3O_(12)復(fù)合材料,并對所得復(fù)合材料的微觀結(jié)構(gòu)和熱性能進行了詳細表征,主要研究內(nèi)容及成果如下:(1)使用分步固相法制備的片狀Sc_2W_3O_(12)粉為原料,和Cu粉按不同質(zhì)量比混合均勻后,壓制成Φ10mm×1.5mm的圓片,通過常壓還原氣氛燒結(jié)制備出Cu/Sc_2W_3O_(12)復(fù)合材料,通過掃描電鏡(SEM)、X射線衍射儀(XRD)對其微觀組織進行了表征,使用熱機械分析儀(TMA)測定其熱膨脹系數(shù),用激光閃射儀(LFA)測量其導(dǎo)熱系數(shù)。結(jié)果顯示,復(fù)合材料熱膨脹系數(shù)最小值為2.1×10~(-6)/K,當溫度高于600℃時,復(fù)合材料內(nèi)部出現(xiàn)了Cu_(0.4)W_(0.6)合金相,為避免合金化,選擇600℃作為復(fù)合材料的燒結(jié)溫度,但低于高致密度Cu的燒結(jié)溫度,導(dǎo)致復(fù)合材料致密度不高,導(dǎo)熱也受影響,導(dǎo)熱系數(shù)最大值為77.5W/(m?K)。(2)為提高復(fù)合材料的致密度,選用真空熱壓燒結(jié)制備Cu/Sc_2W_3O_(12)復(fù)合材料,考察了Sc_2W_3O_(12)顆粒形貌和燒結(jié)溫度對復(fù)合材料微觀組織、熱性能的影響。結(jié)果表明,以納米Sc_2W_3O_(12)粉為原料,于700℃制備的~*Cu60復(fù)合材料的致密度最高,達到92.44%,且Cu基體形成了均勻、完整的網(wǎng)絡(luò)狀結(jié)構(gòu),有利于熱量的傳導(dǎo),相應(yīng)的~*Cu60復(fù)合材料的導(dǎo)熱系數(shù)和熱膨脹系數(shù)分別為243.99W/(m?K)和9.02×10~(-6)/K,硬度也達到了234.32HV。提高燒結(jié)溫度到800℃后,小顆粒Sc_2W_3O_(12)出現(xiàn)了再結(jié)晶,*Cu60復(fù)合材料的熱膨脹系數(shù)進一步降為7.27×10~(-6)/K,接近于Si或GaAs等芯片材料的熱膨脹系數(shù)值,致密度下降為91.6%,相應(yīng)的導(dǎo)熱系數(shù)也下降為208.64W/(m?K),硬度下降為205.4HV,因考慮到封裝材料對于低膨脹、高導(dǎo)熱的應(yīng)用要求,Cu/Sc_2W_3O_(12)復(fù)合材料的最佳熱壓燒結(jié)溫度為800℃。(3)為了進一步改善Cu/Sc_2W_3O_(12)復(fù)合材料的熱性能,引入納米SiC顆粒作為第二增強相,采用真空熱壓燒結(jié)制備了Cu/SiC/Sc_2W_3O_(12)復(fù)合材料,研究了SiC含量及燒結(jié)溫度對復(fù)合材料顯微組織和熱性能的影響,結(jié)果表明,SiC增強相的引入提高了復(fù)合材料的致密化燒結(jié)溫度,當燒結(jié)溫度提高到1000℃,燒結(jié)進行充分,斷口形貌顯示為規(guī)則的韌窩斷口,且復(fù)合粉體的兩種增強相顆粒分布均勻;納米SiC粉末的加入增加了燒結(jié)活化能,促進了1000℃時熔融態(tài)Cu的流動,復(fù)合材料的最大致密度達到了92.86%,相應(yīng)的熱膨脹系數(shù)和導(dǎo)熱系數(shù)分別為13.33×10~(-6)/K和251.18W/(m?K),其熱膨脹系數(shù)有些偏高,不符合應(yīng)用要求,而1000℃燒結(jié)所得60%Cu10%SiC30%Sc_2W_3O_(12)復(fù)合材料的熱膨脹系數(shù)僅為7.12×10~(-6)/K,相應(yīng)的導(dǎo)熱系數(shù)為230.60W/(m?K),二者均滿足封裝材料的應(yīng)用條件。
[Abstract]:Along with the electronic components towards smaller, lighter and faster development trend, the integration degree also increased dramatically, accompanied by the chip heat increase, and the thermal deformation of the material, the traditional Al and Cu packaging materials have been unable to meet the requirements of the thermal performance, due to the development of low expansion, high thermal conductivity packaging materials have become an inevitable trend. This paper takes Cu as the matrix material with negative thermal expansion material Sc_2W_3O_ (12) and low thermal expansion material SiC as reinforcement, Cu/Sc_2W_3O_ were fabricated by powder metallurgy (12) and Cu/SiC/Sc_2W_3O_ (12) composite materials, and the microstructure and thermal properties of the composite materials a detailed characterization, the main research contents and results are as follows: (1) using sheet Sc_2W_3O_ step solid phase preparation (12) powder and Cu powder in different mass ratio of mixing, pressing with diameter of 10mm * 1.5mm wafer, by means of it Reducing atmosphere sintering preparation of Cu/Sc_2W_3O_ (12) composite materials by scanning electron microscopy (SEM), X ray diffraction (XRD) on the microstructure were characterized using thermo mechanical analyzer (TMA) determination of the thermal expansion coefficient, using laser instrument (LFA) to measure the thermal conductivity coefficient. The results showed that composite thermal expansion coefficient of the minimum value is 2.1 * 10~ (-6) /K, when the temperature is higher than 600 DEG C, the composite appeared in Cu_ (0.4) W_ (0.6) alloy phase, in order to avoid alloying, 600 DEG C as sintering temperature of composite materials, but below the sintering temperature of high density Cu. The resulting composite material density is not high, thermal conductivity is also affected by the thermal conductivity, the maximum value is 77.5W/ (M? K). (2) to improve the density of the composite material, preparation of Cu/Sc_2W_3O_ using vacuum hot pressing sintering (12) composite materials, the effects of Sc_2W_3O_ (12) on the microstructure of composite particle morphology and sintering the temperature of the heat. Can the effect. The results showed that the nano Sc_2W_3O_ powder (12) as raw materials, ~*Cu60 composite material at 700 DEG C prepared by the highest density reached 92.44%, and the Cu matrix formed a uniform and complete network structure, is conducive to heat conduction, ~*Cu60 composite material corresponding to the thermal conductivity and thermal expansion the coefficient were 243.99W/ (M? K) and 9.02 * 10~ (-6) /K, the hardness reached 234.32HV. higher sintering temperature to 800 DEG C, small particles of Sc_2W_3O_ (12) appeared recrystallization, thermal expansion coefficient of *Cu60 composites is further reduced to 7.27 * 10~ (-6) /K, or close to Si the GaAs chip material thermal expansion coefficient, the density decreased to 91.6%, the corresponding thermal conductivity coefficient also decreases to 208.64W/ (M? K), hardness decreased to 205.4HV, due to packaging materials for low expansion, application requirements of high thermal conductivity, Cu/Sc_2W_3O_ (12) the best sintering temperature of the composite was 800 C. (3) Cu/Sc_2W_3O_ (12) in order to further improve the thermal properties of composite materials, the introduction of nano SiC particles as reinforcing phase second, Cu/SiC/Sc_2W_3O_ were prepared by vacuum hot pressing sintering (12) composite materials, studied the effects of SiC content and sintering temperature on the properties of the composite microstructure and thermal properties of the results show that SiC reinforcement could improve the densification of composites when the sintering temperature, sintering temperature increase to 1000 degrees Celsius, sintering sufficient, fracture morphology was the rules of the dimple, and the two kinds of particles were homogeneous composite powder; nano SiC powder was increased with the sintering activation energy, promote the flow of the molten Cu at 1000 DEG C, the maximum density reached 92.86% composites, the corresponding thermal expansion coefficient and thermal conductivity were 13.33 * 10~ (-6) /K and 251.18W/ (M? K), the thermal expansion coefficient of some high, does not meet the application It is required that the thermal expansion coefficient of 60%Cu10%SiC30%Sc_2W_3O_ (12) composite material sintered at 1000 C is only 7.12 * 10~ (-6) /K, and the corresponding thermal conductivity is 230.60W/ (M? K), two of which meet the application conditions of packaging materials.

【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB333

【參考文獻】

相關(guān)期刊論文 前10條

1 居相文;吳日民;周亞洲;馬雙彪;楊娟;程曉農(nóng);;氧化石墨烯在水熱法制備Sc_2W_3O_(12)粉體中的應(yīng)用[J];無機材料學(xué)報;2015年04期

2 梁源;邢懷中;晁明舉;梁二軍;;CO_2激光燒結(jié)合成負熱膨脹材料Sc_2(MO_4)_3(M=W,Mo)及其拉曼光譜[J];物理學(xué)報;2014年24期

3 程永光;劉獻省;宋文博;袁保合;王獻立;梁二軍;晁明舉;;Y_(2-x)(LiMg)_xMo_3O_(12)固溶體吸水性與熱膨脹性能研究[J];光散射學(xué)報;2014年03期

4 張立強;王道連;譚杰;李雯;王維;黃榮進;李來風(fēng);;適合于空間技術(shù)領(lǐng)域應(yīng)用的Sn摻雜Mn_3GaN負熱膨脹材料研究(英文)[J];稀有金屬材料與工程;2014年06期

5 史再興;王聰;閆君;褚立華;丁磊;孫瑩;溫永春;;反鈣鈦礦Mn_3AN(C)化合物中的負熱膨脹與磁相轉(zhuǎn)變(英文)[J];硅酸鹽學(xué)報;2014年03期

6 何新波;任樹彬;曲選輝;郭志猛;;電子封裝用高導(dǎo)熱金屬基復(fù)合材料的研究[J];真空電子技術(shù);2010年04期

7 郭世柏;康啟平;;機械合金化制備Mo-Cu復(fù)合材料的研究[J];礦冶工程;2009年04期

8 劉濤;范景蓮;成會朝;田家敏;;W-20%Cu超細復(fù)合粉末的制備和燒結(jié)[J];粉末冶金技術(shù);2007年04期

9 許龍山;陳小華;吳玉蓉;潘偉英;徐海洋;張華;;碳納米管銅基復(fù)合材料的制備[J];中國有色金屬學(xué)報;2006年03期

10 盛洪超;熊翔;姚萍屏;;燒結(jié)溫度對銅基粉末冶金航空剎車材料摩擦磨損行為的影響[J];非金屬礦;2006年01期

相關(guān)博士學(xué)位論文 前1條

1 朱建華;復(fù)合電鑄制備顆粒增強銅基復(fù)合材料工藝及性能研究[D];上海交通大學(xué);2007年

相關(guān)碩士學(xué)位論文 前1條

1 張瑾瑾;機械合金化制備SiC、Mo顆粒增強銅基復(fù)合材料的研究[D];中南大學(xué);2005年

,

本文編號:1401823

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1401823.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶94445***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
亚洲黑人精品一区二区欧美| 精品人妻一区二区三区四在线| 中国日韩一级黄色大片| 国内自拍偷拍福利视频| 久久精品亚洲欧美日韩| 国语久精品在视频在线观看| 欧美日韩国产另类一区二区| 老熟妇乱视频一区二区| 国产欧美日韩综合精品二区| 91精品国产综合久久福利| 国产高清一区二区不卡| 超薄丝袜足一区二区三区| 色婷婷国产熟妇人妻露脸| 亚洲天堂精品1024| 国产美女网红精品演绎| 国产一区二区三区免费福利| 免费在线播放不卡视频| 少妇被粗大进猛进出处故事| 欧美成人免费视频午夜色| 亚洲免费视频中文字幕在线观看| 伊人久久五月天综合网| 国产三级视频不卡在线观看| 91精品视频全国免费| 五月婷婷六月丁香在线观看 | 亚洲中文在线男人的天堂| 亚洲超碰成人天堂涩涩| 亚洲国产四季欧美一区| 国产精品亚洲综合色区韩国| 嫩呦国产一区二区三区av| 黄色日韩欧美在线观看| 尤物天堂av一区二区| 熟女一区二区三区国产| 国产大屁股喷水在线观看视频 | 日韩中文字幕免费在线视频| 亚洲免费观看一区二区三区| 激情综合五月开心久久| 少妇特黄av一区二区三区| 国产一级一片内射视频在线| 丰满熟女少妇一区二区三区| 小黄片大全欧美一区二区| 成人国产激情在线视频|