富勒烯納米流體在石墨烯納米孔隙中的流動(dòng)特性研究
本文關(guān)鍵詞:富勒烯納米流體在石墨烯納米孔隙中的流動(dòng)特性研究 出處:《江蘇大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 富勒烯納米流體 石墨烯 邊界滑移 流動(dòng)特性 分子動(dòng)力學(xué)模擬
【摘要】:隨著微納米技術(shù)與材料科學(xué)技術(shù)的迅速發(fā)展,納米流體器件逐漸興起,流體在納米孔隙中的流動(dòng)問題倍受關(guān)注。本文采用經(jīng)典分子動(dòng)力學(xué)方法,研究了富勒烯納米流體在石墨烯納米孔隙中的流動(dòng)特性,并探索了富勒烯分子在石墨烯納米孔隙內(nèi)的傳輸特性。研究結(jié)果將對(duì)納米流體在石墨烯孔隙中流動(dòng)行為的認(rèn)識(shí)以及石墨烯-納米流體器件的設(shè)計(jì)提供一定的理論基礎(chǔ)。對(duì)富勒烯納米流體在石墨烯納米孔隙中的Couette流動(dòng)和Poiseuille流動(dòng)特性進(jìn)行了研究,探索了剪切速率、驅(qū)動(dòng)外力、富勒烯體積分?jǐn)?shù)、電場(chǎng)強(qiáng)度以及納米孔隙寬度對(duì)邊界滑移的影響。結(jié)果表明:邊界滑移速率隨著富勒烯體積分?jǐn)?shù)的增加而增大。與此同時(shí),當(dāng)電場(chǎng)強(qiáng)度較小時(shí),納米流體的流動(dòng)表現(xiàn)為邊界正滑移,此時(shí)邊界滑移速率隨著電場(chǎng)強(qiáng)度的增強(qiáng)而減小;然而當(dāng)電場(chǎng)強(qiáng)度達(dá)到臨界值時(shí),納米流體的流動(dòng)開始出現(xiàn)邊界負(fù)滑移,此后邊界滑移速率隨著電場(chǎng)強(qiáng)度的增強(qiáng)先減小后增大。此外,在Couette流動(dòng)中,當(dāng)剪切應(yīng)變率超過臨界剪切應(yīng)變率時(shí),邊界滑移速率迅速增大,并且臨界剪切應(yīng)變率隨著電場(chǎng)強(qiáng)度的增強(qiáng)而增大;邊界滑移速率隨著納米孔隙寬度的增大而減小。在Poiseuille流動(dòng)中,隨著驅(qū)動(dòng)外力與納米孔隙寬度的增大,納米流體的流速增大,導(dǎo)致邊界滑移速率增大;诟焕障┘{米流體與石墨烯組成的Couette流動(dòng)模型,探索了剪切速率、富勒烯體積分?jǐn)?shù)以及電場(chǎng)強(qiáng)度對(duì)納米流體粘度的影響。結(jié)果表明:富勒烯納米流體的粘度與剪切應(yīng)變率無關(guān),卻隨著富勒烯體積分?jǐn)?shù)的增加而增大。此外,當(dāng)電場(chǎng)強(qiáng)度較小時(shí),納米流體的粘度隨著電場(chǎng)強(qiáng)度的增強(qiáng)而增大;但是當(dāng)電場(chǎng)強(qiáng)度達(dá)到臨界值時(shí),此后納米流體的粘度隨著電場(chǎng)強(qiáng)度的增強(qiáng)先減小后增大。基于富勒烯納米流體與石墨烯組成的Poiseuille流動(dòng)模型,對(duì)富勒烯分子的運(yùn)動(dòng)行為以及分布進(jìn)行了探索。結(jié)果表明:當(dāng)驅(qū)動(dòng)外力與納米孔隙寬度較小時(shí),富勒烯分子團(tuán)簇現(xiàn)象較明顯,隨著驅(qū)動(dòng)外力與納米孔隙寬度的增大,富勒烯分子團(tuán)簇現(xiàn)象逐漸減弱,分子團(tuán)個(gè)數(shù)逐漸增多;并且隨著富勒烯體積分?jǐn)?shù)的增加,富勒烯分子更容易發(fā)生團(tuán)簇。與此同時(shí),當(dāng)電場(chǎng)強(qiáng)度較小時(shí),隨著電場(chǎng)強(qiáng)度的增強(qiáng),富勒烯分子團(tuán)簇現(xiàn)象逐漸減弱,并且富勒烯分子逐漸有向壁面運(yùn)動(dòng)的趨勢(shì),從而導(dǎo)致富勒烯分子團(tuán)會(huì)在石墨烯壁面附近運(yùn)動(dòng);然而當(dāng)電場(chǎng)強(qiáng)度較大時(shí),隨著電場(chǎng)強(qiáng)度的增強(qiáng),富勒烯分子會(huì)再次在通道中心附近運(yùn)動(dòng)并發(fā)生團(tuán)簇現(xiàn)象。此外,研究還發(fā)現(xiàn)流動(dòng)系統(tǒng)中富勒烯分子的總旋轉(zhuǎn)動(dòng)能只與富勒烯分子的個(gè)數(shù)有關(guān),而驅(qū)動(dòng)外力以及電場(chǎng)強(qiáng)度不會(huì)對(duì)其產(chǎn)生明顯影響。
[Abstract]:With the rapid development of nanotechnology and materials science and technology, nano fluidic devices gradually rise, fluid flow problems in the pores have attracted much attention. This paper uses classical molecular dynamics method, the flow characteristics of fullerenes in fluid in the pores of Shi Moxi, and to explore the transmission characteristics of the fullerene molecules in graphene nano pore. The research results will provide a theoretical basis on the flow behavior of nanofluids in graphene pores in understanding as well as the graphene nano fluid device design. Flow characteristics of fullerenes in graphene nano pore fluid flow in Couette and Poiseuille were studied, explored the shear rate, driving force, fullerene volume fraction. Effect of electric field strength and nano pore width of boundary slip. The results show that the boundary slip rate with volume fraction of fullerene The number increasing. At the same time, when the electric field is small, the flow performance of nanofluids for boundary slip, the boundary slip rate with the increase of electric field strength decreases; however, when the electric field reaches a critical value, the nano fluid flow appeared negative slip boundary, then the boundary slip rate with the increase of electric field strength first decreases and then increases. In addition, the Couette flow, when the shear strain rate exceeds the critical shear strain rate, boundary slip rate increases rapidly, and the critical shear strain rate increases with the increase of electric field strength; the boundary slip rate decreases with the increase of nano pore width. In Poiseuille flow, with the increase of driving force with nanometer pore width, nano fluid velocity increases, resulting in the boundary slip rate increases. The fullerene and graphene nano fluid composition based on Couette flow The dynamic model of the shear rate, effects of fullerene volume fraction and electric field strength on the nano fluid viscosity. The results show that the fullerene nano fluid independent of viscosity and shear strain rate, but increases with the volume fraction of the fullerene. In addition, when the electric field is small, the nano fluid viscosity increases with the increase of electric field strength; but when the electric field reaches a critical value, then the nano fluid viscosity with increasing electric field strength decreased and then increased. The Poiseuille flow model of fullerene nano fluid Shi Moxi and composition based on fullerene molecular motion behavior and distribution are explored. The results show that when the driving force and the nano pore width is small, fullerene molecules the cluster phenomenon is obvious, with the increase of driving force and the nano pore width, fullerene cluster phenomenon gradually weakened, clusters The number gradually increased; with the increase of the volume fraction of fullerenes and fullerene molecules, are more prone to cluster. At the same time, when the electric field is small, with the increase of electric field strength, fullerene cluster phenomenon gradually weakened, and gradually a fullerene molecule wall movement trend, leading group will exercise in the vicinity of fullerene molecules of graphite vinyl wall; however, when the electric field is large, with the increase of electric field strength, fullerene molecules will again move near channel center and cluster phenomenon. In addition, the study also found that the number of the total rotational kinetic energy of fullerene molecules in flow system only with fullerene molecules, and the driving force and the electric field strength is not obvious the influence to it.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O613.71;TB383.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 南怡伶;孔憲;李繼鵬;盧滇楠;;納米狹縫中水流動(dòng)非平衡分子動(dòng)力學(xué)模擬[J];化工學(xué)報(bào);2017年05期
2 趙夢(mèng)堯;楊雪平;楊曉寧;;石墨烯狹縫受限孔道中水分子的分子動(dòng)力學(xué)模擬[J];物理化學(xué)學(xué)報(bào);2015年08期
3 婁彥敏;唐耀;劉錦超;;溫度和外加電場(chǎng)對(duì)水分子團(tuán)簇影響的分子動(dòng)力學(xué)模擬[J];西南民族大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年01期
4 向恒;姜培學(xué);劉其鑫;毛志方;;納米通道內(nèi)液體流動(dòng)的分子動(dòng)力學(xué)研究[J];工程熱物理學(xué)報(bào);2008年09期
5 徐超,何雅玲,王勇;納米通道滑移流動(dòng)的分子動(dòng)力學(xué)模擬研究[J];工程熱物理學(xué)報(bào);2005年06期
6 王慧,胡元中,鄒鯤,冷永勝;納米摩擦學(xué)的分子動(dòng)力學(xué)模擬研究[J];中國(guó)科學(xué)(A輯);2001年03期
相關(guān)博士學(xué)位論文 前2條
1 張忠強(qiáng);流體在納米微通道中的流動(dòng)及傳輸特性研究[D];大連理工大學(xué);2010年
2 鄭勇剛;納米晶體材料中晶粒生長(zhǎng)及變形機(jī)理的研究[D];大連理工大學(xué);2008年
相關(guān)碩士學(xué)位論文 前1條
1 王大放;用分子動(dòng)力學(xué)方法模擬高壓電場(chǎng)對(duì)碳酸鈣結(jié)晶過程的影響[D];中國(guó)石油大學(xué);2010年
,本文編號(hào):1392503
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1392503.html