PVDF壓力測(cè)量特性與水下爆炸近場(chǎng)多孔金屬夾芯板動(dòng)力響應(yīng)的研究
本文關(guān)鍵詞:PVDF壓力測(cè)量特性與水下爆炸近場(chǎng)多孔金屬夾芯板動(dòng)力響應(yīng)的研究 出處:《中國(guó)科學(xué)技術(shù)大學(xué)》2015年博士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: PVDF壓電薄膜 壓力測(cè)量 水下爆炸 多孔金屬夾芯板 動(dòng)力響應(yīng) 光滑粒子法
【摘要】:多孔金屬材料夾芯結(jié)構(gòu)具有超輕質(zhì)、高比強(qiáng)度、高比剛度、良好的耗能效率等物理和力學(xué)特性,近年來(lái)被廣泛應(yīng)用于工程防護(hù)、航空航天、建筑和海洋工程等領(lǐng)域,在各種服役環(huán)境中發(fā)揮良好的工程作用,而有關(guān)多孔金屬夾芯結(jié)構(gòu)在準(zhǔn)靜態(tài)和動(dòng)態(tài)載荷下的力學(xué)行為問(wèn)題也由此成為學(xué)術(shù)研究的重點(diǎn)之一。由于多孔金屬夾芯結(jié)構(gòu)組成方式的多樣性和受到載荷的復(fù)雜性,這一課題仍有大量問(wèn)題需要解決。目前,有關(guān)多孔金屬夾芯結(jié)構(gòu)在沖擊或爆炸等強(qiáng)動(dòng)載荷作用下的力學(xué)行為研究多局限于空中加載條件下,然而該復(fù)合結(jié)構(gòu)作為一種具有優(yōu)異物理特性和力學(xué)性能的工程結(jié)構(gòu),可在海洋防護(hù)和艦船工業(yè)中得到廣泛應(yīng)用,而目前有關(guān)多孔金屬夾芯結(jié)構(gòu)在水下爆炸載荷作用下的力學(xué)行為及其失效機(jī)理的研究較為少見(jiàn)。此外,以PVDF壓電薄膜為敏感元件的壓力傳感器在爆炸腫擊壓力測(cè)量中被廣泛地使用,相比于其他測(cè)壓敏感元件,壓電薄膜具有壓電常數(shù)大、頻響寬、信噪比高、便于加工、成本低廉等優(yōu)點(diǎn)。以其為敏感元件制作的薄膜式壓力計(jì),便于布設(shè)在結(jié)構(gòu)層間或表面進(jìn)行壓力測(cè)試又不干擾結(jié)構(gòu)響應(yīng)。然而,其靈敏度系數(shù)不穩(wěn)定性及其應(yīng)用技術(shù)方面仍然存在諸多問(wèn)題,尤其是利用PVDF壓力計(jì)測(cè)量水下爆炸試驗(yàn)中結(jié)構(gòu)流固界面壓力時(shí),仍然存在測(cè)試技術(shù)上的難點(diǎn)。因此,本文針對(duì)典型的蜂窩鋁夾芯板進(jìn)行水下爆炸實(shí)驗(yàn),研究其抗水下爆炸性能及動(dòng)態(tài)力學(xué)行為。為測(cè)試水下爆炸中流固界面上的加載壓力,特對(duì)夾芯式PVDF壓力計(jì)不同條件下的界面壓力測(cè)量特性進(jìn)行研究與總結(jié)。 通過(guò)SHPB實(shí)驗(yàn)裝置對(duì)自制夾芯式PVDF壓力計(jì)進(jìn)行一系列的標(biāo)定試驗(yàn),發(fā)現(xiàn)壓力計(jì)制作工藝引起的傳感器內(nèi)部不平整和壓桿端部接觸質(zhì)量是導(dǎo)致其力計(jì)靈敏度系數(shù)不穩(wěn)定的主要原因,包括引線覆壓區(qū)域的應(yīng)力集中效應(yīng)、剪切效應(yīng)和標(biāo)定實(shí)驗(yàn)中壓桿端部與壓力計(jì)接觸時(shí)敏感元件實(shí)際受力面積的不確定性。針對(duì)壓力計(jì)厚度和實(shí)驗(yàn)桿端接觸情況改進(jìn)后,得到擬合靈敏度系數(shù)K=24.7pC/N。由此可知,PVDF壓力的標(biāo)定和使用過(guò)程中,需要考慮壓力計(jì)的實(shí)際受力狀況。為此,針對(duì)不同情況下結(jié)構(gòu)表面(固-固界面和流固界面)爆炸壓力的測(cè)量進(jìn)行試驗(yàn)研究,從壓力計(jì)橫向效應(yīng)、界面的接觸情況和界面兩側(cè)介質(zhì)屬性的差異性三個(gè)方面分析了不同介質(zhì)交界面上PVDF壓力計(jì)的壓力測(cè)量特性,其中界面兩側(cè)介質(zhì)屬性差異性又主要體現(xiàn)在二者波阻抗和可壓縮性的差異性。然后為拓展PVDF壓力計(jì)在水下爆炸壓力測(cè)試中的應(yīng)用,以壓電薄膜為敏感元件設(shè)計(jì)并制作一種PVDF型水下爆炸壓力傳感器,該傳感器基本能夠滿(mǎn)足近場(chǎng)水下爆炸壓力測(cè)試要求,通過(guò)水下標(biāo)定實(shí)驗(yàn)可知其靈敏度系數(shù)K=13.84pC/N,進(jìn)一步證明PVDF壓力計(jì)的靈敏度系數(shù)應(yīng)根據(jù)其實(shí)際使用條件進(jìn)行標(biāo)定。 針對(duì)鋁板-蜂窩鋁-鋁板夾芯結(jié)構(gòu)進(jìn)行近場(chǎng)水下爆炸實(shí)驗(yàn),并通過(guò)一系列對(duì)比實(shí)驗(yàn)研究各設(shè)計(jì)參數(shù)對(duì)結(jié)構(gòu)響應(yīng)和次生沖擊波的影響規(guī)律。結(jié)果分析中,同時(shí)以結(jié)構(gòu)背板最大塑性變形和背部次生沖擊波強(qiáng)度來(lái)衡量不同配置的復(fù)合結(jié)構(gòu)的抗水下爆炸性能,并對(duì)水下爆炸載荷作用下的結(jié)構(gòu)變形/失效模式進(jìn)行了分析總結(jié)。結(jié)果表明:在保證芯層配置和加載條件相同的條件下,增大面板厚度可以有效降低結(jié)構(gòu)背板最大塑性變形并同時(shí)降低次生沖擊波強(qiáng)度;當(dāng)結(jié)構(gòu)面板厚度和加載條件相同時(shí),增大芯層的高度可以有效降低結(jié)構(gòu)背板最大變形,同時(shí)能夠增大沖擊波的衰減行程從而降低背部次生沖擊波的強(qiáng)度;增大鋁箔厚度意味著增加芯層的相對(duì)密度,雖然能夠提高芯層壓縮過(guò)程中吸收的能量從而降低結(jié)構(gòu)背板最大變形,但同時(shí)會(huì)增大背部次生沖擊波的強(qiáng)度;芯層孔邊長(zhǎng)為單變量因素時(shí),結(jié)構(gòu)最大變形與其并不成單調(diào)關(guān)系。相同芯層高度和鋁箔厚度前提下,增大孔邊長(zhǎng)度能夠提高芯層壓縮的容易程度以便吸收更多的能量從而降低背板的變形幅度,但是當(dāng)芯層孔邊長(zhǎng)度過(guò)大時(shí),芯層極易過(guò)早地被壓縮至密實(shí)化,使得過(guò)多的能量傳遞到背板從而產(chǎn)生更大的變形。總結(jié)可知,芯層的密度是影響結(jié)構(gòu)背部次生沖擊波強(qiáng)度的主要因素,而結(jié)構(gòu)的能量吸收過(guò)程和動(dòng)態(tài)響應(yīng)則與芯層的設(shè)計(jì)參數(shù)相關(guān)。對(duì)實(shí)驗(yàn)后的樣本進(jìn)行結(jié)構(gòu)變形/失效分析,發(fā)現(xiàn)近場(chǎng)水下爆炸作用下,結(jié)構(gòu)的前面板變形較為復(fù)雜,當(dāng)面板越薄、承受爆炸沖量越大時(shí),面板失效形式越復(fù)雜,往往呈現(xiàn)出中心區(qū)域的局部失效、周邊區(qū)域的花瓣形褶皺失效以及整個(gè)迎爆面的塑性大變形:對(duì)于背板而言,所有背板均產(chǎn)生球冠形塑性大變形;芯層則首先呈現(xiàn)出與背板相吻合的彎曲變形和自上而下的漸進(jìn)壓縮形態(tài),壓縮高度自中心向外逐漸降低,邊界處由于固支約束會(huì)形成一圈剪切破壞區(qū),當(dāng)芯層被完全壓實(shí)時(shí),可能出現(xiàn)孔外穿透、芯層拉伸斷裂等失效形態(tài)。最后,通過(guò)對(duì)等質(zhì)量的實(shí)體板對(duì)比實(shí)驗(yàn)可知,蜂窩鋁夾芯板抵抗變形能力大于等質(zhì)量的實(shí)體板,而且復(fù)合結(jié)構(gòu)對(duì)于降低背部次生沖擊波強(qiáng)度的效果更為明顯,蜂窩鋁夾芯結(jié)構(gòu)的抗水下爆炸性能明顯優(yōu)于等質(zhì)量實(shí)體結(jié)構(gòu)。 通過(guò)應(yīng)變測(cè)量研究水下爆炸作用下前后面板的動(dòng)態(tài)行為,然后進(jìn)行對(duì)應(yīng)的空中爆炸實(shí)驗(yàn),對(duì)比分析水下和空中爆炸載荷下蜂窩鋁夾芯板變形失效模式的差異性。結(jié)果表明:結(jié)構(gòu)響應(yīng)初期前面板中心區(qū)域的應(yīng)變?yōu)閺澗刂鲗?dǎo),中心向外區(qū)域彎矩主導(dǎo)過(guò)程較短而轉(zhuǎn)為面內(nèi)拉力主導(dǎo)的變形和失效,靠近邊界處面板由于固支邊界而表現(xiàn)出明顯的彎矩效應(yīng),前面板中心和邊界區(qū)域比中間區(qū)域應(yīng)變受彎矩影響大。背板中心區(qū)域和邊界處的應(yīng)變?yōu)閺澗睾兔鎯?nèi)拉力疊加作用,中間區(qū)域則主要為面內(nèi)拉力產(chǎn)生的正應(yīng)變。面板應(yīng)變信號(hào)初始時(shí)刻都有明顯的對(duì)應(yīng)于沖擊波的沖擊應(yīng)變,且對(duì)于相同芯層配置的結(jié)構(gòu)而言,面板強(qiáng)度越低沖擊應(yīng)變?cè)矫黠@;沖擊應(yīng)變之后面板均開(kāi)始出現(xiàn)彎矩主導(dǎo)的應(yīng)變信號(hào),即對(duì)于強(qiáng)度較弱的結(jié)構(gòu),Fleck描述的三階段解耦模型相對(duì)保守。相同藥量和爆心距離條件下,水下爆炸作用下的結(jié)構(gòu)失效主要以整體塑性大變形和芯層的漸進(jìn)壓縮為主,而空中爆炸時(shí)結(jié)構(gòu)則以面板中心區(qū)域的花瓣形撕裂和芯層的橫向破壞為主,即同藥量和爆心距時(shí),近場(chǎng)空中爆炸對(duì)結(jié)構(gòu)的毀傷程度和范圍大于水下爆炸。近場(chǎng)空中和水下爆炸載荷作用機(jī)理的差異性導(dǎo)致其毀傷模態(tài)的不同,其差異性可從沖擊波和流固耦合過(guò)程兩個(gè)方面解釋?zhuān)阂环矫?一般情況下空氣中沖擊波速度較低,空氣沖擊波和爆炸產(chǎn)物的作用具有較強(qiáng)的局部性和瞬態(tài)性,因此結(jié)構(gòu)易產(chǎn)生局部失效甚至破壞;另一方面,水下爆炸沖擊波和氣泡載荷能量相當(dāng),但二者作用時(shí)間尺度差別大,因此水下爆炸時(shí)結(jié)構(gòu)受到的能量和沖量的傳遞過(guò)程較為分散,結(jié)構(gòu)更趨向于產(chǎn)生整體變形。 基于上述實(shí)驗(yàn)研究結(jié)果,應(yīng)用非線性有限元程序LS-DYNA對(duì)水下爆炸載荷下蜂窩鋁夾芯結(jié)構(gòu)的動(dòng)態(tài)行為進(jìn)行數(shù)值模擬研究,分析了水下爆炸載荷作用和結(jié)構(gòu)響應(yīng)過(guò)程,探討了夾芯結(jié)構(gòu)各組件之間的能量傳遞和吸收規(guī)律。以六面體單元?jiǎng)澐值膶?shí)體芯層模型計(jì)算中,分別考察面板厚度、芯層密度和高度三個(gè)關(guān)鍵參數(shù)對(duì)結(jié)構(gòu)變形和各組件間能量吸收的影響規(guī)律,結(jié)果表明計(jì)算得到的三個(gè)關(guān)鍵參數(shù)對(duì)背板中心撓度的影響規(guī)律與實(shí)驗(yàn)結(jié)果較為一致;通過(guò)結(jié)構(gòu)各組件能量耗散分析發(fā)現(xiàn)增大面板厚度會(huì)降低結(jié)構(gòu)吸收的總能量和芯層吸收能量在總能量中的比例;隨著芯層高度的增大,結(jié)構(gòu)吸收的總能量降低,可以提高結(jié)構(gòu)抗變形能力和芯層吸收能量的百分比;提高芯層密度會(huì)減小結(jié)構(gòu)吸收的總能量,但可以提高芯層能量占總能量的比重。采用殼單元?jiǎng)澐值姆涓C模型可以較為清晰地描述芯層在變形過(guò)程中的漸進(jìn)屈曲、密實(shí)化、塑性大變形和蜂窩面外壓縮等失效模式。分析認(rèn)為面外屈曲壓潰和彎矩導(dǎo)致的孔壁轉(zhuǎn)動(dòng)可能是導(dǎo)致芯層和背板層間失效的主要原因?偨Y(jié)可知,抗爆炸/沖擊的結(jié)構(gòu)在設(shè)計(jì)關(guān)鍵參數(shù)時(shí),需要同時(shí)考慮結(jié)構(gòu)的抗變形能力、衰減沖擊波的性能和各組件的能量吸收能力三個(gè)要素。
[Abstract]:Sandwich structure of porous metal materials with ultra lightweight, high specific strength, high specific stiffness, energy efficiency and other physical and good mechanical properties, has been widely used in engineering protection, aerospace, construction and marine engineering and other fields, in a variety of service play good role in environmental engineering, and the mechanical behavior of porous metal sandwich structure in quasi-static and dynamic loads which have become one of the focus of academic research. Because of the complexity of porous metal sandwich structure diversity and load, this topic is still a lot of problems need to be solved. At present, the porous metal sandwich structures under impact or explosion dynamic mechanical behavior of the load. The limited to air loading conditions, however, the composite structure is a kind of excellent physical properties and mechanical properties of engineering structures in ocean protection and Widely used in shipbuilding industry, and the current research on porous metal sandwich structure under water mechanics of explosion load behavior and failure mechanism is relatively rare. In addition, the PVDF piezoelectric film is widely used for pressure sensor pressure in the explosion swelling measurement, compared to other pressure sensitive element. The piezoelectric film has a large piezoelectric constant, wide frequency response, high signal-to-noise ratio, easy processing, low cost and other advantages. The film type pressure sensitive element production, convenient layout and pressure test in the structure layer or surface does not disturb the response of the structure. However, there are still many problems in its instability and its application the sensitivity coefficient, especially solid interface pressure structure blast test flow meter under the water pressure by PVDF, there are still difficulties in testing technology. Therefore, this paper. The underwater honeycomb sandwich panels were subjected to underwater explosion experiments to study their underwater explosion performance and dynamic mechanical behavior. In order to test the loading pressure on the fluid solid interface during underwater explosion, the characteristics of the interface pressure measurement of sandwich PVDF pressure gauge under different conditions were studied and summarized.
The homemade sandwich type PVDF pressure gauge calibration test was made through a series of SHPB experimental device, pressure gauge sensor manufacturing process that caused by uneven and rod end contact quality is the main cause of its force sensitivity coefficient of instability, including lead overburden pressure in the area of stress concentration effect and shear effect the calibration experiment and the end of the pressure rod contact pressure gauge when the actual stress sensitive element area of uncertainty. According to the experimental pressure gauge thickness and rod end contact situation improved, fitting the sensitivity coefficient K=24.7pC/N. of the calibration and use of PVDF pressure, the need to consider the actual stress condition of pressure gauge. Therefore, according to the the surface structure under different conditions (solid solid interface and liquid-solid interface) experimental study on measurement of explosion pressure gauge, the transverse effect from pressure, contact and both sides of the interface dielectric interface Three aspects of quality attribute analysis on the difference of pressure measurement interface PVDF pressure gauge of different media, especially the difference of both sides of the interface properties of the medium is mainly reflected in the difference of wave impedance and compressibility of two. Then in the underwater explosion pressure measurement test plan for the application to expand PVDF pressure. Piezoelectric thin film pressure sensor for sensitive elements for design and a PVDF type underwater explosion, the sensor can basically meet the requirements of pressure test of near field underwater explosion, the underwater calibration experiment shows the sensitivity coefficient of K=13.84pC/N, further proved that the sensitivity coefficient of PVDF pressure gauge should be calibrated according to the actual conditions of use.
The aluminum - aluminum honeycomb sandwich structure - plate experiments near field underwater explosion, and through a series of experiments on various design parameters on the structural response and the impact of the secondary wave. The results of the analysis, at the same time to maximize the structure distortion and the back of the secondary shock wave to measure the intensity of different configurations of composite structure the anti explosion performance of underwater, underwater explosion load, deformation and failure mode were analyzed. The results showed that: in ensuring the core layer configuration and loading under the same conditions, increasing the thickness of the panel structure can effectively reduce the back the maximum plastic deformation and decrease the strength of the secondary shock wave when the structure; panel thickness and loading conditions are the same, increasing the height of the core layer can effectively reduce the maximum deformation of the structure at the same time can increase travel back, attenuation of shock wave and reduce back The secondary shock wave strength; increase the thickness of the aluminum foil means to increase the relative density of the core layer, the core layer can improve the compression process of the absorption of energy in order to reduce the maximum deformation of the structure back, but at the same time will increase the intensity of shock wave in the secondary back; the core layer hole length of single variable factors, the maximum deformation of structure and is not monotone the relationship between the same core. The height and thickness of aluminum under the premise of increasing hole length can improve the degree of compression of the core layer easy to absorb more energy so as to reduce the deformation amplitude back, but when the core hole length is too large, the core layer can easily be prematurely compressed to densification, making too much energy transfer to the backplane resulting in greater deformation. The summary, the core layer density is the main factors affect the structure of the back of secondary shock wave intensity, and the structure of the energy absorption process and dynamic response and The design parameters of the core layer. Failure analysis of deformation / structure of experimental samples after, found that near field underwater explosion, the front panel deformation of the structure is relatively complex, when the panel is thin, under explosion impulse is large, the panel failure forms more complex, often showing a local regional center of the failure of petals shaped fold surrounding area as well as the failure of blasting surface plastic deformation for backplane, produce spherical large plastic deformation are all back; the core layer is consistent with the first show back bending deformation and top-down progressive compression, compression height decreased gradually outward from the center, at the boundary due to solid a constraint will form a circle shear failure zone, when the core layer is fully compacted, possible hole penetration, failure form of core layer tensile fracture. Finally, through the entity board on the quality of the equivalence ratio, Honeycomb aluminum sandwich panels are more resistant to deformation than those of equal mass. Moreover, the composite structure has more obvious effect on reducing the secondary shock wave strength of the back, and the underwater explosion performance of honeycomb aluminum sandwich structure is better than that of the equal mass solid structure.
The dynamic behavior of underwater explosion under the front and rear panels of strain measurement, and then the air explosion experiments corresponding to the difference analysis of failure modes of aluminum honeycomb sandwich plate under water and air explosion load deformation are compared. The results show that: the structural response before early strain heart panel for the moment leading, the center outward bending moment the leading process is short to in-plane deformation and failure of the dominant force, close to the border because the panel clamped boundary and show bending effect obviously, the front panel center and the border area than the middle region. Effects of bending strain and strain back center area and the boundary for the moment and the surface tension of superposition effect the middle region is mainly positive in-plane tension. The initial strain signal panel has obvious impact strain corresponding to the shock wave, and for the same core layer The structure, the lower panel strength impact strain is more obvious; the impact of strain after the panel began leading the bending strain signal, the structure for weak intensity, the three phase decoupling model described by Fleck is relatively conservative. The same charge and blasting center distance under the condition of the structure subjected to underwater explosion failure mainly progressive compression the overall plastic deformation and the core layer, and the air blast when the structure is destroyed in the transverse panel in the center region of the petal shaped tear and core layer, namely the same charge and blasting center distance, near field air explosion on damage degree and range of structure than that of underwater explosion. The difference of load mechanism near field air and underwater explosion caused the damage mode is different, the difference can be from two aspects of shock wave and fluid solid coupling process: on the one hand, the general situation of air shock wave in low speed, The air shock wave and explosion effect of the product is local and transient stronger, so the structure is easy to produce local failure or damage; on the other hand, the underwater explosion shock wave and the bubble load energy, but the role of the two different time scales, so the underwater explosion energy transfer process by node structure and impulse the more dispersed structure tend to produce a deformation.
Based on the experimental results, the dynamic behavior of the application of nonlinear finite element program LS-DYNA on aluminum honeycomb sandwich structure under the underwater explosion load was studied by numerical simulation, analysis of the load and the structure response process of underwater explosion, probes into the sandwich structure of each component of energy transfer and absorption law. With solid core layer model divided hexahedron element in the calculation, respectively. The effect of panel thickness, structural deformation and influence rules between components of the energy absorption of the core density and height of three key parameters, the results show that the three key parameters calculated on the backplane center deflection and the impact of the experimental results are consistent; through the analysis of energy dissipation structure of each component that increases the panel the thickness will reduce the total energy absorption structure and core layer to absorb energy in the total energy ratio; with the increase of the height of the core layer, absorbing structure The total energy is reduced, the structure can improve the anti deformation capacity and energy absorption percentage of core layer; increasing the core density will reduce the total energy absorption structure, but can improve the core energy and total energy. The proportion of the honeycomb model shell elements can clearly describe the core layer in the deformation process of the progressive buckling, densification, plastic deformation and honeycomb compression failure mode. Analysis shows that the rotating wall buckling and bending moment caused by crushing was likely to cause the core layer and the backplane layer failure. The summary, structure of anti explosion / impact in the design of key parameters, taking into account the needs of the anti deformation capability of the structure, the three elements of attenuation of shock waves and the components of the energy absorption capacity.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:TB383.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙繼波;譚多望;張遠(yuǎn)平;孫永強(qiáng);龔晏青;;PVDF計(jì)在水中爆炸近場(chǎng)壓力測(cè)試中的應(yīng)用[J];火炸藥學(xué)報(bào);2009年03期
2 余尚江;楊吉祥;李科杰;;箔式鐿應(yīng)力傳感器及試驗(yàn)研究[J];兵工學(xué)報(bào);2006年04期
3 劉華;朱小芹;楊嘉陵;;沖擊載荷下受軸向約束的點(diǎn)陣材料夾芯簡(jiǎn)支梁[J];北京航空航天大學(xué)學(xué)報(bào);2009年12期
4 李利莎;謝清糧;鄭全平;張洪海;杜建國(guó);;基于Lagrange、ALE和SPH算法的接觸爆炸模擬計(jì)算[J];爆破;2011年01期
5 李焰,鐘方平,劉乾,劉瑜,秦學(xué)軍,譚紅梅;PVDF在動(dòng)態(tài)應(yīng)變測(cè)量中的應(yīng)用[J];爆炸與沖擊;2003年03期
6 巫緒濤;胡時(shí)勝;田杰;;PVDF應(yīng)力測(cè)量技術(shù)及在混凝土沖擊實(shí)驗(yàn)中的應(yīng)用[J];爆炸與沖擊;2007年05期
7 席道瑛,,鄭永來(lái);PVDF壓電計(jì)在動(dòng)態(tài)應(yīng)力測(cè)量中的應(yīng)用[J];爆炸與沖擊;1995年02期
8 王海福,馮順山;爆炸載荷下聚氨酯泡沫材料中沖擊波壓力特性[J];爆炸與沖擊;1999年01期
9 果明明;用碳?jí)鹤鑲鞲衅鳒y(cè)量低沖擊波壓力[J];傳感器技術(shù);1994年04期
10 陳祥,李言祥;金屬泡沫材料研究進(jìn)展[J];材料導(dǎo)報(bào);2003年05期
相關(guān)博士學(xué)位論文 前4條
1 孟黎清;飛機(jī)蜂窩結(jié)構(gòu)動(dòng)態(tài)沖擊下的破壞機(jī)理及吸收能量分配機(jī)制[D];太原理工大學(xué);2011年
2 劉均;方形蜂窩夾層結(jié)構(gòu)振動(dòng)與沖擊響應(yīng)分析[D];華中科技大學(xué);2009年
3 宋延澤;泡沫鋁子彈撞擊下多孔金屬夾芯板的塑性動(dòng)力響應(yīng)研究[D];太原理工大學(xué);2009年
4 林謀金;鋁纖維炸藥爆炸性能與力學(xué)性能研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
本文編號(hào):1383254
本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1383254.html