天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 材料論文 >

復(fù)合材料圓筒形薄殼熱屈曲問題研究

發(fā)布時間:2018-01-03 22:36

  本文關(guān)鍵詞:復(fù)合材料圓筒形薄殼熱屈曲問題研究 出處:《大連理工大學(xué)》2015年碩士論文 論文類型:學(xué)位論文


  更多相關(guān)文章: 熱屈曲 圓筒形薄殼 FGM 纖維樹脂材料 均勻溫升


【摘要】:新型材料的出現(xiàn)給航空航天、汽車、醫(yī)學(xué)等行業(yè)向著更高端產(chǎn)業(yè)發(fā)展帶來了契機,但伴隨著它的廣泛應(yīng)用也帶來了諸多問題,比如力學(xué)問題就是大家所關(guān)注的一個重要方面,其中熱屈曲力學(xué)行為成為當前研究的熱點也是難點。為此本文借助Donnell薄殼理論推導(dǎo)了圓筒形薄殼熱屈曲臨界溫升的理論解,研究了金屬材料、功能梯度材料(FGM)和纖維樹脂復(fù)合材料圓筒形薄殼的熱屈曲行為,并結(jié)合有限元數(shù)值解驗證和對比分析,對理論解進行修正。主要工作和結(jié)論如下:(1)根據(jù)Donnell簡化準則,利用Timoshenko推導(dǎo)方法,通過聯(lián)立幾何方程、物理方程、平衡方程和邊界條件,推導(dǎo)出金屬材料圓筒形薄殼在均勻溫升下的熱屈曲理論解。然后利用有限元數(shù)值方法,得到金屬圓筒形薄殼在均勻溫升下的特征值,即臨界溫升。最后通過對比分析,進而提出修正系數(shù),完善金屬材料圓筒形薄殼在均勻溫升下的熱屈曲理論解。(2)分別根據(jù)Timoshenko推導(dǎo)方法和von Mises推導(dǎo)方法,推導(dǎo)出FGM圓筒形薄殼在均勻溫升下的兩種熱屈曲理論解,結(jié)果顯示兩種理論推導(dǎo)結(jié)果誤差小于1%,表明理論計算結(jié)果的一致性。同時利用有限元數(shù)值計算方法,求得FGM圓筒形薄殼在均勻溫升下的特征值。通過比較理論解和數(shù)值解,進而提出修正系數(shù),完善FGM圓筒形薄殼在均勻溫升下的熱屈曲理論解。(3)根據(jù)Donnell簡化準則,利用von Mises方法,推導(dǎo)出纖維樹脂材料圓筒形薄殼在均勻溫升下的熱屈曲理論解,并利用有限元數(shù)值方法,求得到纖維樹脂材料圓筒形薄殼在均勻溫升下的特征值,結(jié)果顯示理論解與數(shù)值解最大誤差低于16%,這是由于纖維材料各向異性及層間應(yīng)力引起的誤差所致。(4)綜合理論推導(dǎo)和數(shù)值計算,結(jié)果均表明:金屬材料圓筒形薄殼熱屈曲臨界溫升與其彈性模量無關(guān);FGM圓筒形薄殼臨界溫升值隨著冪指數(shù)k的增加而增大;三種材料圓筒形薄殼熱屈曲臨界溫升值與其幾何長度無關(guān),與其半徑成反比。
[Abstract]:The emergence of new materials to aerospace, automotive, medical and other industries to the more high-end industry development opportunities, but with its wide application has also brought a lot of problems. Mechanics, for example, is an important aspect of concern. The thermal buckling mechanical behavior has become a hot topic and a difficult point in recent years. In this paper, the theoretical solution of the critical temperature rise of thermal buckling of cylindrical thin shells is derived by Donnell thin shell theory, and the metal materials are studied. The thermal buckling behavior of functionally graded material (FGM) and fiber resin composite cylindrical thin shell is verified and compared with finite element method. The main work and conclusions are as follows: 1) according to the Donnell simplification criterion, by using the Timoshenko derivation method, the simultaneous geometric equation and the physical equation are adopted. The equilibrium equation and boundary conditions are used to deduce the theoretical solution of thermal buckling of cylindrical thin shells with metallic materials under uniform temperature rise, and then the eigenvalues of thin cylindrical shells under uniform temperature rise are obtained by using finite element numerical method. That is, critical temperature rise. Finally, through comparative analysis, the correction coefficient is put forward. The theoretical solution of thermal buckling of cylindrical thin shell with metal material under uniform temperature rise is improved. (2) according to Timoshenko derivation method and von Mises derivation method, respectively. Two theoretical solutions for thermal buckling of FGM cylindrical thin shells under uniform temperature rise are derived. The results show that the errors of the two theories are less than 1%. It is shown that the theoretical results are consistent and the eigenvalues of FGM cylindrical thin shells under uniform temperature rise are obtained by using finite element numerical method. By comparing the theoretical and numerical solutions, the correction coefficients are proposed. The theoretical solution of thermal buckling of FGM cylindrical thin shell under uniform temperature rise is improved. (3) according to the Donnell simplified criterion, the von Mises method is used. The theoretical solution of thermal buckling of cylindrical thin shell with fiber resin under uniform temperature rise is derived, and the characteristic value of cylindrical thin shell of fiber resin material under uniform temperature rise is obtained by using finite element numerical method. The results show that the maximum error between the theoretical solution and the numerical solution is less than 16, which is caused by the anisotropy of fiber material and the error caused by interlaminar stress. The results show that the critical temperature rise of thermal buckling of cylindrical thin shell is independent of its elastic modulus. The critical temperature rise of FGM cylindrical shell increases with the increase of power exponent k. The critical temperature rise of thermal buckling of cylindrical thin shell of three kinds of materials is independent of its geometric length and inversely proportional to its radius.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:TB33

【參考文獻】

相關(guān)期刊論文 前2條

1 鄧可順,張亞輝;考慮材料性質(zhì)參數(shù)隨溫度變化的熱屈曲試探解法[J];大連理工大學(xué)學(xué)報;1999年03期

2 彭建設(shè),楊杰;功能梯度材料矩形中厚板的受壓/熱致屈曲[J];固體力學(xué)學(xué)報;2005年01期

,

本文編號:1375931

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/cailiaohuaxuelunwen/1375931.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶eac23***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com